Avances recientes (2016 - 2020) en la síntesis verde de nanopartículas de óxidos metálicos: Una descripción general
DOI:
https://doi.org/10.33448/rsd-v10i16.23406Palabras clave:
Química verde; Cerámica; Ruta de sínteses; Nanomateriales.Resumen
El desarrollo de productos y procesos más ecológicos ha atraído mucha atención en los últimos años. Así, los investigadores han desarrollado varios métodos para mejorar la síntesis de óxidos y metales de una forma más ecológica. La síntesis verde se ha convertido en un método muy utilizado por su baja toxicidad, bajo costo y alta disponibilidad de materia prima. En esta ruta se utilizan algunas fuentes biológicas como hongos, bacterias y plantas, pero los extractos de plantas son los más utilizados en la literatura. Varias partes de la planta como raíces, corteza, flores, frutos, tallo, semillas y hojas son ricas en metabolitos secundarios como: flavonoides, fenoles, esteroides, terpenoides, alcaloides, saponinas y compuestos fenólicos juegan un papel esencial en el proceso de polimerización, cableado y estabilización que generan los óxidos. La metodología utilizada en el proceso de síntesis interfiere aproximadamente en algunas propiedades y características del mismo óxido como su morfología. En este sentido, este trabajo presenta una revisión de la síntesis verde en la obtención de óxidos y sus morfologías.
Citas
Aarthye, P., & Sureshkumar, M. (2021). Green synthesis of nanomaterials: An overview. Materials Today: Proceedings, 10.1016/j.matpr.2021.04.564.
Abdeen, M., Sabry, S., Ghozlan, H., El-Gendy, A. A., & Carpenter, E. E. (2016). Microbial-Physical Synthesis of Fe and Fe3O4 Magnetic Nanoparticles Using Aspergillus Niger YESM1 and Supercritical Condition of Ethanol. Journal of Nanomaterials, 2016. 10.1155/2016/9174891
Abinaya, S., Kavitha, H. P., Prakash, M., & Muthukrishnaraj, A. (2021). Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustainable Chemistry and Pharmacy, 19(September 2020), 100368. 10.1016/j.scp.2020.100368
Akintelu, S. A., Folorunso, A. S., Folorunso, F. A., & Oyebamiji, A. K. (2020). Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 6(7), e04508. 10.1016/j.heliyon.2020.e04508
Alasvand, K., & Ravishankar, Z. V. (2016). Inhibition of a sulfate reducing bacterium, Desulfovibrio marinisediminis GSR3, by biosynthesized copper oxide nanoparticles. 3 Biotech, 6(1), 1–7. 10.1007/s13205-016-0403-0
Balraj, B., Senthilkumar, N., Siva, C., Krithikadevi, R., Julie, A., Potheher, I. V., & Arulmozhi, M. (2017). Synthesis and characterization of Zinc Oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity. Research on Chemical Intermediates, 43(4), 2367–2376. 10.1007/s11164-016-2766-6
Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15, 100223. 10.1016/j.scp.2020.100223.
Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F. M., Khan, M. I., Jalal, F., & Iqbal, M. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 8(6), 6115–6124. 10.1016/j.jmrt.2019.10.006
Chen, L., Batjikh, I., Hurh, J., Han, Y., Huo, Y., Ali, H., Li, J. F., Rupa, E. J., Ahn, J. C., Mathiyalagan, R., & Yang, D. C. (2019). Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik, 184(January), 324–329. 10.1016/j.ijleo.2019.03.051
Chinnasamy, C., Tamilselvam, P., Karthick, B., Sidharth, B., & Senthilnathan, M. (2018). Green Synthesis, Characterization and Optimization Studies of Zinc Oxide Nano Particles Using Costusigneus Leaf Extract. Materials Today: Proceedings, 5(2), 6728–6735. 10.1016/j.matpr.2017.11.331.
Das, K. R., Kowshik, M., Praveen Kumar, M. K., Kerkar, S., Shyama, S. K., & Mishra, S. (2018). Native hypersaline sulphate reducing bacteria contributes to iron nanoparticle formation in saltpan sediment: A concern for aquaculture. Journal of Environmental Management, 206, 556–564. 10.1016/j.jenvman.2017.10.078
Das, R. K., & Brar, S. K. (2013). Plant mediated green synthesis: Modified approaches. Nanoscale, 5(21), 10155–10162. 10.1039/c3nr02548a
Devatha, C. P., Jagadeesh, K., & Patil, M. (2018). Environmental Nanotechnology, Monitoring & Management E ff ect of Green synthesized iron nanoparticles by Azardirachta Indica in di ff erent proportions on antibacterial activity. Environmental Nanotechnology, Monitoring & Management, 9, 85–94. 10.1016/j.enmm.2017.11.007
Dubey, S., Kumar, J., Kumar, A., & Sharma, Y. C. (2018). Facile and green synthesis of highly dispersed cobalt oxide (Co3O4) nano powder: Characterization and screening of its eco-toxicity. Advanced Powder Technology, 29(11), 2583–2590. 10.1016/j.apt.2018.03.009
Dutta, S., Jaiswal, K. K., Verma, R., Basavaraju, D. M., & Ramaswamy, A. P. (2019). Green synthesis of zinc oxide catalyst under microwave irradiation using banana (Musa spp.) corm (rhizome) extract for biodiesel synthesis from fish waste lipid. Biocatalysis and Agricultural Biotechnology, 22, 101390. 10.1016/j.bcab.2019.101390
El-batal, A. I., Al-hazmi, N. E., Mosallam, F. M., & El-sayyad, G. S. (2018). Microbial Pathogenesis Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microbial Pthogenesis, 118(March), 159–169. 10.1016/j.micpath.2018.03.013
El-sayyad, A. I. E. G. S. (2019). Penicillium chrysogenum -Mediated Mycogenic Synthesis of Copper Oxide Nanoparticles Using Gamma Rays for In Vitro Antimicrobial Activity Against Some Plant Pathogens. Journal of Cluster Science, 3. 10.1007/s10876-019-01619-3
Eltarahony, M., Zaki, S., & Abd-el-haleem, D. (2018). Concurrent Synthesis of Zero- and One-Dimensional, Spherical, Rod, Needle, and Wire-Shaped CuO Nanoparticles by Proteus mirabilis 10B. 2018.
Fazlzadeh, M., Rahmani, K., Zarei, A., Abdoallahzadeh, H., Nasiri, F., & Khosravi, R. (2017). A novel green synthesis of zero valent iron nanoparticles ( NZVI) using three plant extracts and their efficient application for removal of Cr ( VI ) from aqueous solutions. Advanced Powder Technology, 28(1), 122–130. 10.1016/j.apt.2016.09.003
Fink, A. (2019). Conducting Research Literature Reviews: From the Internet to Paper (SAGE Publi).
Fouda, A., EL-Din Hassan, S., Salem, S. S., & Shaheen, T. I. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125(September), 252–261. 10.1016/j.micpath.2018.09.030
Ghasemi, N., Jamali-sheini, F., & Zekavati, R. (2017). CuO and Ag / CuO nanoparticles: Biosynthesis and antibacterial properties. Materials Letters, 196, 78–82. 10.1016/j.matlet.2017.02.111
Gowri, M., Latha, N., & Rajan, M. (2019). Copper Oxide Nanoparticles Synthesized Using Eupatorium odoratum, Acanthospermum hispidum Leaf Extracts, and Its Antibacterial Effects Against Pathogens: a Comparative Study. BioNanoScience, 9(3), 545–552. 10.1007/s12668-019-00655-7
Gupta, K., & Chundawat, T. S. (2020). Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass and Bioenergy, 143(July), 105840. 10.1016/j.biombioe.2020.105840
Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes-A review. Colloids and Surfaces B: Biointerfaces, 121, 474–483. 10.1016/j.colsurfb.2014.05.027
Ibrahem, E., Thalij, K., & Badawy, A. (2017). Antibacterial Potential of Magnesium Oxide Nanoparticles Synthesized by Aspergillus niger. Biotechnology Journal International, 18(1), 1–7. 10.9734/bji/2017/29534
Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. 10.1039/c1gc15386b
Jacob, P. J., Masarudin, M. J., Hussein, M. Z., & Rahim, R. A. (2019). Optimization of process parameters in fl uencing the sustainable construction of iron oxide nanoparticles by a novel tropical wetlands. Journal of Cleaner Production, 232, 193–202. 10.1016/j.jclepro.2019.05.359
Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2017). Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New Journal of Chemistry, 41(7), 2800–2814. 10.1039/c6nj03176e
Kalpana, V. N., Kataru, B. A. S., Sravani, N., Vigneshwari, T., Panneerselvam, A., & Devi Rajeswari, V. (2018). Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano, 3(June), 48–55. 10.1016/j.onano.2018.06.001
Karpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160(12159), 286–292. 10.1016/j.vacuum.2018.11.043
Khan, Z. U. H., Sadiq, H. M., Shah, N. S., Khan, A. U., Muhammad, N., Hassan, S. U., Tahir, K., safi, S. Z., Khan, F. U., Imran, M., Ahmad, N., Ullah, F., Ahmad, A., Sayed, M., Khalid, M. S., Qaisrani, S. A., Ali, M., & Zakir, A. (2019). Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. Journal of Photochemistry and Photobiology B: Biology, 192(November 2018), 147–157. 10.1016/j.jphotobiol.2019.01.013
Khatami, M., Alijani, H. Q., Heli, H., & Sharifi, I. (2018). Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceramics International, 44(13), 15596–15602. 10.1016/j.ceramint.2018.05.224
Kouhkan, M., Ahangar, P., Babaganjeh, L. A., & Allahyari-devin, M. (2020). Biosynthesis of Copper Oxide Nanoparticles Using. 101–111. 10.2174/1573413715666190318155801
Kovačec, E., Regvar, M., van Elteren, J. T., Arčon, I., Papp, T., Makovec, D., & Vogel-Mikuš, K. (2017). Kovačec2017.pdf. Chemosphere Journal, 180, 178–185.
Kumar, B. P., Arthanareeswari, M., Devikala, S., Sridharan, M., Arockia selvi, J., & Pushpa malini, T. (2019). Green synthesis of zinc oxide nanoparticles using typha latifolia. L leaf extract for photocatalytic applications. Materials Today: Proceedings, 14, 332–337. 10.1016/j.matpr.2019.04.155
Lu, J., Ali, H., Hurh, J., Han, Y., Batjikh, I., Rupa, E. J., Anandapadmanaban, G., Park, J. K., & Yang, D. C. (2019). The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method. Optik, 184(March), 82–89. 10.1016/j.ijleo.2019.03.050
Lüdke, M., & André, M. E. D. A. (2012). Pesquisa em educação: abordagens qualitativas (E.P.U).
Maruthupandy, M., Zuo, Y., Chen, J. S., Song, J. M., Niu, H. L., Mao, C. J., Zhang, S. Y., & Shen, Y. H. (2017). Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Applied Surface Science, 397, 167–174. 10.1016/j.apsusc.2016.11.118
Moghaddas, T. H. S. M., Elahi, B., Darroudi, M., & Javanbakht, V. (2019). Green synthesis of hexagonal-shaped zinc oxide nanosheets using mucilage from flaxseed for removal of methylene blue from aqueous solution. Journal of Molecular Liquids, 296, 111834. 10.1016/j.molliq.2019.111834
Mohamed, A. A., Fouda, A., Abdel-Rahman, M. A., Hassan, S. E. D., El-Gamal, M. S., Salem, S. S., & Shaheen, T. I. (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatalysis and Agricultural Biotechnology, 19(January), 101103. 10.1016/j.bcab.2019.101103
Mohanasrinivasan, V., Subathra Devi, C., Mehra, A., Prakash, S., Agarwal, A., Selvarajan, E., & Jemimah Naine, S. (2018). Biosynthesis of MgO Nanoparticles Using Lactobacillus Sp. and its Activity Against Human Leukemia Cell Lines HL-60. BioNanoScience, 8(1), 249–253. 10.1007/s12668-017-0480-5
Moraes, L. C., Figueiredo, R. C., Ribeiro-andrade, R., Arantes, L., Giani, A., Figueredo, C. C., & Pontes-silva, A. V. (2021). High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: A species-specific green synthesis. 42(May). 10.1016/j.colcom.2021.100420
Mousa, A. M., Abdel, O. A., Al-hagar, O. E. A., Gizawy, M. A., Allan, K. F., & Attallah, M. F. (2020). Biosynthetic new composite material containing CuO nanoparticles produced by Aspergillus terreus for 47 Sc separation of cancer theranostics application from irradiated Ca target. Applied Radiation and Isotopes, 166(July), 109389. 10.1016/j.apradiso.2020.109389
Muthuvinothini, A., & Stella, S. (2019). Green synthesis of metal oxide nanoparticles and their catalytic activity for the reduction of aldehydes. Process Biochemistry, 77(July 2018), 48–56. 10.1016/j.procbio.2018.12.001
Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., & Faisal, S. (2020). Green Synthesis of Cerium Oxide Nanoparticles (CeO 2 NPs ) and Their Antimicrobial Applications : A Review. International Journal of Nanomedicine, 15, 5951–5961.
Narendhran, S., Manikandan, M., & Baby Shakila, P. (2019). Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: A green chemistry approach. Bulletin of Materials Science, 42(3). 10.1007/s12034-019-1811-7
Nasrollahzadeh, M., Sajadi, S. M., Rostami-Vartooni, A., & Hussin, S. M. (2016). Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. Journal of Colloid and Interface Science, 466, 113–119. 10.1016/j.jcis.2015.12.018
Nisha, B., Vidyalakshmi, Y., & Razack, S. A. (2020). Enhanced formation of ruthenium oxide nanoparticles through green synthesis for highly efficient supercapacitor applications. Advanced Powder Technology, 31(3), 1001–1006. 10.1016/j.apt.2019.12.026
Olajire, A. A., & Mohammed, A. A. (2020). Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. Advanced Powder Technology, 31(1), 211–218. 10.1016/j.apt.2019.10.012
Ramalingam, R., Fazil, M. H. U. T., Verma, N. K., & Arunachalam, K. D. (2019). Green synthesis, characterization and antibacterial evaluation of electrospun nickel oxide nanofibers. Materials Letters, 256, 126616. 10.1016/j.matlet.2019.126616
Ramanarayanan, R., Bhabhina, N. M., Dharsana, M. V., Nivedita, C. V., & Sindhu, S. (2018). Green synthesis of zinc oxide nanoparticles using extract of Averrhoa bilimbi(L) and their photoelectrode applications. Materials Today: Proceedings, 5(8), 16472–16477. 10.1016/j.matpr.2018.05.150
Rao, T. N., Riyazuddin, Babji, P., Ahmad, N., Khan, R. A., Hassan, I., Shahzad, S. A., & Husain, F. M. (2019). Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity. Saudi Journal of Biological Sciences, 26(7), 1385–1391. 10.1016/j.sjbs.2019.09.005
Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine and Pharmacotherapy, 89, 1067–1077. 10.1016/j.biopha.2017.02.101
Saravanakumar, K., Shanmugam, S., & Babu, N. (2019). Journal of Photochemistry & Photobiology , B : Biology Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. Journal of Photochemistry & Photobiology, B: Biology, 190(June 2018), 103–109. 10.1016/j.jphotobiol.2018.11.017
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Marta Bianca da Costa Rocha; Tomaz Rodrigues de Araújo; Rodolfo Luiz Bezerra de Araújo Medeiros; Marcelo Moizinho Oliveira; Gilvan Pereira de Figueredo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.