Ciclotides y sus principales estructuras moleculares y especímenes: una revisión de la literatura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i16.23727

Palabras clave:

Química; Plantas; Biosíntesis.

Resumen

Al igual que las proteínas, los péptidos tienen una variedad de funciones como la función estructural, la reserva de energía, el transporte, enzimático, hormonal e incluso en la defensa de los organismos contra cuerpos extraños. Como por ejemplo los ciclopéptidos que son una clase de péptidos que tienen una cadena cerrada, que acaban diferenciándose de otros péptidos gracias a la diferente conformación circular de otras estructuras peptídicas que son lineales, realizando la función inmune en especies vegetales. Además, este grupo de péptidos tiene una amplia distribución, y actualmente existen unos 50 ciclotides distribuidos en 5 familias de plantas superiores: Rubiaceae, Solanaceae, Fabaceae, Cucurbitaceae y Violaceae, y la mayor distribución se encuentra en la familia de Violaceae. En la literatura científica existen pocos estudios que retraten en profundidad sobre este grupo de péptidos, por lo que este trabajo tiene como objetivo retratar la biosíntesis, los principales especímenes, así como las principales estructuras moleculares de los ciclotides.

Citas

Albrechtsen, N. J. W; Rehfeld, J. F. On Premises and Principles for Measurement of Gastrointestinal Peptide Hormones. Peptides, p. 170545, 2021.

Broussalis, A. M; Ferraro, G. E. Ciclótidos: péptidos macrocíclicos presentes en plantas (Revisión). Dominguezia, v. 22, n. 1, p. 7-14, 2006.

Broussalis, A. M; Clemente, S; Ferraro, G. E. Hybanthus parviflorus (Violaceae): Insecticidal activity of a South American plant. Crop Protection, v. 29, n. 9, p. 953-956, 2010.

Burman, R. et al. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Front. Plant. Sci., v. 6, p. 855, 2015.

Craik, D. J; Malik, U. Cyclotide biosynthesis. Current opinion in chemical biology, v. 17, n. 4, p. 546-554, 2013.

Cross, J A. et al. Fragment-linking peptide design yields a high-affinity ligand for microtubule-based transport. Cell Chemical Biology, 2021.

Daly, N. L; Rosengren, K. J; Craik, D. J. Discovery, structure and biological activities of cyclotides. Advanced drug delivery reviews, v. 61, n. 11, p. 918-930, 2009.

Dancewicz, K et al. Behavioral and physiological effects of Viola spp. cyclotides on Myzus persicae (Sulz.). Journal of insect physiology, v. 122, p. 104025, 2020.

Gupta, R; Mishra, M; Ghosh, S. K. Interaction of cyclotide Kalata B1 protein with model cellular membranes of varied electrostatics. International Journal of Biological Macromolecules, 2021.

Hashempour, H. et al. Analysis of cyclotides in Viola ignobilis by nano liquid chromatography fourier transform mass spectrometry. Prot. Pept. Lett., v. 18, p. 747- 752, 2011.

Hashempour, H. et al. Characterizing circular peptides in mixtures: sequence fragment assembly of cyclotides from a violet plant by MALDI-TOF/TOF mass spectrometry. Amino Acids, v. 44, p. 581-595, 2013.

Hellinger, R. et al. Peptidomics of circular cysteine-rich plant peptides: analysis of the diversity of cyclotides from Viola tricolor by transcriptome and proteome mining. J. Proteome Res., v. 14, p. 4851-4862, 2015.

https://www.netinbag.com/pt/science/what-is-a-cyclic-peptide.html.

Jennings, C et al. Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proceedings of the National Academy of Sciences, v. 98, n. 19, p. 10614-10619, 2001.

Jennings, C. V. et al. Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: do Möbius strips exist in nature?. Biochemistry, v. 44, n. 3, p. 851-860, 2005.

Malagón, D et al. Anthelminthic activity of the cyclotides (kalata B1 and B2) against schistosome parasites. Peptide Science, v. 100, n. 5, p. 461-470, 2013.

Martell, Ernesto M. et al. Host defense peptides as immunomodulators: The other side of the coin. Peptides, v. 146, p. 170644, 2021.

Nguyen, G. K. T et al. Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. Journal of Biological Chemistry, v. 286, n. 27, p. 24275-24287, 2011.

Nguyen, G, K. T et al. Novel cyclotides and uncyclotides with highly shortened precursors from Chassalia chartacea and effects of methionine oxidation on bioactivities. Journal of Biological Chemistry, v. 287, n. 21, p. 17598-17607, 2012.

Nguyen, G. K. T et al. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. Journal of Biological Chemistry, v. 288, n. 5, p. 3370-3380, 2013.

Narayani, M. et al. Production of bioactive cyclotides in somatic embryos of Viola odorata. Phytochemistry, v. 156, p. 135-141, 2018

Neves, N. C. Ciclotídeos: origem, estrutura e funções secundárias, uma revisão narrativa. 2018.

Picchi, D. G et al. Peptídeos cíclicos de biomassa vegetal: características, diversidade, biossíntese e atividades biológicas. Química Nova, v. 32, p. 1262-1277, 2009.

Ravipati, A. S. et al. Lysine-rich cyclotides: a new subclass of circular knotted proteins from violaceae. ACS chemical biology, v. 10, n. 11, p. 2491-2500, 2015.

Rajendran, S et al. Tropical vibes from Sri Lanka-cyclotides from Viola betonicifolia by transcriptome and mass spectrometry analysis. Phytochemistry, v. 187, p. 112749, 2021.

Rathnayake, A. U et al. Characterization and Purification of β− Secretase Inhibitory Peptides Fraction from Sea Cucumber (Holothuria spinifera) Enzymatic Hydrolysates. Process Biochemistry, 2021.

Stryer, L; Tymoczko, J. L; Berg, J. M. Bioquímica; 4ª Edição. Editora

Guanabara, 1996.

Silva, O. N. et al. Cn‐AMP1: A new promiscuous peptide with potential for microbial infections treatment. Peptide Science, v. 98, n. 4, p. 322-331, 2012.

Shafee, T; Harris, K; Anderson, M. Biosynthesis of cyclotides. Advances in Botanical Research, v. 76, p. 227-269, 2015.

Silva, O. N. et al. Cn‐AMP1: A new promiscuous peptide with potential for microbial infections treatment. Peptide Science, v. 98, n. 4, p. 322-331, 2012.

Saadi, S et al. The structural reconformation of peptides in enhancing functional and therapeutic properties: Insights into their solid state crystallizations. Biophysical Chemistry, p. 106565, 2021.

Saiqali, A. M; Tangutur, A. D; Bhukya, B. Peptides and low molecular weight polypeptides of Azadirachta indica seeds as new weapons against cancer cells and superbugs. Phytomedicine Plus, p. 100118, 2021.

Suyetin, M et al. Modelling peptide adsorption energies on gold surfaces with an effective implicit solvent and surface model. Journal of Colloid and Interface Science, v. 605, p. 493-499, 2021.

Tam, J. P. et al. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proceedings of the National Academy of Sciences, v. 96, n. 16, p. 8913-8918, 1999.

Teixeira, V; Feio, M. J.; Bastos, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Progress in lipid research, v. 51, n. 2, p. 149-177, 2012.

Yeshak, M. Y. et al. Cyclotides from an extreme habitat: characterization of cyclic peptides from Viola abyssinica of the Ethiopian highlands. J. Nat. Prod., v. 74, p. 727- 731, 2011.

Publicado

13/12/2021

Cómo citar

MATOS, D. F. .; PAZ, W. S. da .; ARAÚJO, Q. M. dos S. .; SILVA, M. A. .; NUNES, M. L. A. .; BALBINO, R. dos S. .; SANTOS, A. B. A. de S. .; TAVARES, A. C. .; OLIVEIRA, J. M. de .; BARBOSA, J. P. .; SANTOS JÚNIOR, L. J. dos .; SANTOS, J. F. F. . Ciclotides y sus principales estructuras moleculares y especímenes: una revisión de la literatura. Research, Society and Development, [S. l.], v. 10, n. 16, p. e342101623727, 2021. DOI: 10.33448/rsd-v10i16.23727. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23727. Acesso em: 17 jul. 2024.

Número

Sección

Revisiones