Producción de masa ácida y panes sin gluten con harinas de arroz integral y frijoles de carioca y caupí: características bioquímicas, nutricionales y estructurales
DOI:
https://doi.org/10.33448/rsd-v10i16.23992Palabras clave:
Bacterias lácticas; Digestibilidad de proteínas; Fibras alimentarias; Levadura; Panadería.Resumen
El uso de harinas alternativas sin gluten y la aplicación de fermentación natural en la fabricación de panes son tecnologías prometedoras para mejorar las propiedades sensoriales, estructurales y nutricionales. El objetivo de este estudio fue verificar la aplicabilidad y calidad de los panes sin gluten elaborados con masa ácida de harinas integrales de arroz (BR y BRY), frijoles carioca (BP y BPY) y caupí (BV y BVY). Las masas ácidas se prepararon sin y con la adición de levadura biológica (Saccharomyces cerevisiae) representada por la letra “Y”. Los panes elaborados a partir de estas masas fueron sometidos a análisis de pH, acidez total titulable, color, actividad de agua, humedad, análisis de imagen, volumen específico, textura instrumental, composición próxima y valor energético. Los resultados indicaron un mayor contenido de cenizas, proteínas y fibra dietética en las harinas BP y BV. Al final de la fermentación, las masas BR y BRY mostraron mayor acidez. Las masas elaboradas con frijol mostraron mayores volúmenes de expansión. Se verificó menor volumen, firmeza y dureza para el pan BBRY y lo contrario se verificó para el pan BVB. Los panes BBV, BBVY, BBP y BBPY tuvieron mayor contenido de cenizas, proteínas y fibra dietética y menor contenido de carbohidratos digestibles. Los panes BPB y BVB mostraron mayor digestibilidad de proteínas y lo contrario se observó para BBRY (70,60%), BPBY (81,09%) y BVBY (80,89%). El uso de harina de frijol en la preparación de panes resultó en productos ricos en fibra dietética y proteínas, especialmente para los frijoles carioca.
Citas
AACCI. (2010). American Association of Cereal Chemists International. Approved Methods of American Association of Cereal Chemists. AACC, St. Paul.
Aissa, M. F. Ben, Bahloul, S., Monteau, J.-Y., & Le-Bail, A. (2015). Effect of Temperature on the Solubility of CO 2 in Bread Dough. International Journal of Food Properties, 18(5), 1097–1109. https://doi.org/10.1080/10942910903176360
AOAC. (2019). Association of Official Analysis Chemists International. Official Methods of Analysis of AOAC International. AOAC, Gaithersburg.
Akeson, W. R., & Stahmann, M. A. (1964). A Pepsin Pancreatin Digest Index of Protein Quality Evaluation. The Journal of Nutrition, 83(3), 257–261. https://doi.org/10.1093/jn/83.3.257
Aplevicz, K. S. (2013). Identificação de bactérias láticas e leveduras em fermento natural obtido a partir de uva e sua aplicação em pães. Universidade Federal de Santa Catarina.
Arendt, E. K., & Moroni, A. V. (2013). Sourdough and Gluten-Free Products. In Handbook on Sourdough Biotechnology (p. 245–264). Springer US. https://doi.org/10.1007/978-1-4614-5425-0_10
Arendt, E. K., Morrissey, A., Moore, M. M., & Bello, F. D. (2008). Gluten-free breads. In Gluten-Free Cereal Products and Beverages (p. 289–VII). Elsevier. https://doi.org/10.1016/B978-012373739-7.50015-0
Avilés-Gaxiola, S., Chuck-Hernández, C., & Serna Saldívar, S. O. (2018). Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. Journal of Food Science, 83(1), 17–29. https://doi.org/10.1111/1750-3841.13985
Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26(1), 89–105. https://doi.org/10.1016/j.biotechadv.2007.09.002
Benavent-Gil, Y., & Rosell, C. M. (2019). Technological and Nutritional Applications of Starches in Gluten-Free Products. In Starches for Food Application (p. 333–358). Elsevier. https://doi.org/10.1016/B978-0-12-809440-2.00009-5
Bender, D., Fraberger, V., Szepasvári, P., D’Amico, S., Tömösközi, S., Cavazzi, G., & Schoenlechner, R. (2018). Effects of selected lactobacilli on the functional properties and stability of gluten-free sourdough bread. European Food Research and Technology, 244(6), 1037–1046. https://doi.org/10.1007/s00217-017-3020-1
Bender, D., & Schönlechner, R. (2020). Innovative approaches towards improved gluten-free bread properties. Journal of Cereal Science, 91, 102904. https://doi.org/10.1016/j.jcs.2019.102904
Bolanos, J., Schmiele, M., & Vernaza, M. G. (2019). Utilización de fréjol, arroz y aguacate en la elaboración de galletas ricas en proteína y libres de gluten. In II INCOFS - Congreso Internacional de Alimentos Ciencia y Tecnología: Quito (Ecuador).
Boukid, F., Folloni, S., Ranieri, R., & Vittadini, E. (2018). A compendium of wheat germ: Separation, stabilization and food applications. Trends in Food Science & Technology, 78, 120–133. https://doi.org/10.1016/j.tifs.2018.06.001
Boukid, F., Vittadini, E., Lusuardi, F., Ganino, T., Carini, E., Morreale, F., & Pellegrini, N. (2019). Does cell wall integrity in legumes flours modulate physiochemical quality and in vitro starch hydrolysis of gluten-free bread? Journal of Functional Foods, 59, 110–118. https://doi.org/10.1016/j.jff.2019.05.034
Boyle, C., Hansen, L., Hinnenkamp, C., & Ismail, B. P. (2018). Emerging Camelina Protein: Extraction, Modification, and Structural/Functional Characterization. Journal of the American Oil Chemists’ Society, 95(8), 1049–1062. https://doi.org/10.1002/aocs.12045
Brasil. (2003). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução - RDC nº 359, de 23 de dezembro de 2003. Regulamento técnico de porções de alimentos embalados para fins de rotulagem nutricional. Diário Oficial da União, Poder Executivo, Brasília, DF. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/rdc0359_23_12_2003.html#:~:text=Considerando%20a%20necessidade%20do%20constante,prote%C3%A7%C3%A3o%20%C3%A0%20sa%C3%BAde%20da%20popula%C3%A7%C3%A3o%3B&text=1%C2%BA%20Aprovar%20o%20Regulamento%20T%C3%A9cnico,Rotulagem%20Nutricional%2C%20conforme%20o%20Anexo.
Brasil. (2005). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução - RDC n° 263, de 22 de setembro de 2005. Regulamento técnico para produtos de cereais, amidos, farinhas e farelos. Diário Oficial da União, Poder Executivo, Brasília, DF. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0263_22_09_2005.html.
Brasil. (2008). Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 12, de 31 de março de 2008. Regulamento Técnico do Feijão. Diário Oficial da União, Poder Executivo, Brasília, DF. http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalM apa&chave=294660055.
Brasil. (2012). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução - RDC nº 54, de 12 de novembro de 2012. Regulamento Técnico sobre Informação Nutricional Complementar. Diário Oficial da União, Poder Executivo, Brasília, DF. https://bvsms.saude.gov.br/bvs/s audelegis/anvisa/2012/rdc0054_12_11_2012.html.
Brites, L. T. G. F., Schmiele, M., & Steel, C. J. (2018). Gluten-Free Bakery and Pasta Products. In Alternative and Replacement Foods (p. 385–410). Elsevier. https://doi.org/10.1016/B978-0-12-811446-9.00013-7
Carvalho, J. J., Bastos, A. V. S., Saad, J. C. C., Naves, S. S., Soares, F. A. L., & Vidal, V. M. (2014). Teor e acúmulo de nutrientes em grãos de feijão comum em semeadura direta, sob déficit hídrico. Brazilian Journal of Irrigation and Drainage, 1(1), 104-117. DOI: https://doi.org/10.15809/irriga.2014v1n1p104.
Celmeli, T., Sari, H., Canci, H., Sari, D., Adak, A., Eker, T., & Toker, C. (2018). The Nutritional Content of Common Bean (Phaseolus vulgaris L.) Landraces in Comparison to Modern Varieties. Agronomy, 8(9), 166. https://doi.org/10.3390/agronomy8090166
Chavan, R. S., & Chavan, S. R. (2011). Sourdough Technology-A Traditional Way for Wholesome Foods: A Review. Comprehensive Reviews in Food Science and Food Safety, 10(3), 169–182. https://doi.org/10.1111/j.1541-4337.2011.00148.x
Chutkan, R., Fahey, G., Wright, W. L., & McRorie, J. (2012). Viscous versus nonviscous soluble fiber supplements: Mechanisms and evidence for fiber-specific health benefits. Journal of the American Academy of Nurse Practitioners, 24(8), 476–487. https://doi.org/10.1111/j.1745-7599.2012.00758.x
Coda, R., Kärki, I., Nordlund, E., Heiniö, R.-L., Poutanen, K., & Katina, K. (2014). Influence of particle size on bioprocess induced changes on technological functionality of wheat bran. Food Microbiology, 37, 69–77. https://doi.org/10.1016/j.fm.2013.05.011
Coda, R., Kianjam, M., Pontonio, E., Verni, M., Di Cagno, R., Katina, K., & Gobbetti, M. (2017). Sourdough-type propagation of faba bean flour: Dynamics of microbial consortia and biochemical implications. International Journal of Food Microbiology, 248, 10–21. https://doi.org/10.1016/j.ijfoodmicro.2017.02.009
Coda, R., Varis, J., Verni, M., Rizzello, C. G., & Katina, K. (2017). Improvement of the protein quality of wheat bread through faba bean sourdough addition LWT - Food Science and Technology, 82, 296–302. https://doi.org/10.1016/j.lwt.2017.04.062
Corsetti, A., & Settanni, L. (2007). Lactobacilli in sourdough fermentation. Food Research International, 40(5), 539–558. https://doi.org/10.1016/j.foodres.2006.11.001
Cozzolino, S. M. F. (2016). Biodisponibilidade de nutrientes. Manole.
Crivelenti, F. F., Brites, M. S., Paucar-Menacho, L. M., Schmiele, M., Chang, Y. K., & Clerici, M. T. P. S. (2013). Desarrollo de galletas tipo cookie con sustitucion parcial de harina de soya germinada. In IV Congreso Internacional Ciencia y Tecnología de los Alimentos: (p. 100–105). Córdoba (Argentina).
Damodaran, S., & Parking, K. L. (2017). Fennema’s Food Chemistry, Fifth Edition. CRC Press. https://doi.org/10.1201/9781315372914
De Vuyst, L., Van Kerrebroeck, S., Harth, H., Huys, G., Daniel, H.-M., & Weckx, S. (2014). Microbial ecology of sourdough fermentations: Diverse or uniform? Food Microbiology, 37, 11–29. https://doi.org/10.1016/j.fm.2013.06.002
De Vuyst, Luc, Harth, H., Van Kerrebroeck, S., & Leroy, F. (2016). Yeast diversity of sourdoughs and associated metabolic properties and functionalities. International Journal of Food Microbiology, 239, 26–34. https://doi.org/10.1016/j.ijfoodmicro.2016.07.018
De Vuyst, Luc, & Neysens, P. (2005). The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science & Technology, 16(1–3), 43–56. https://doi.org/10.1016/j.tifs.2004.02.012
Figueroa, A. M. (2016). Caracterização de amidos obtidos de diferentes feijões e sua aplicação em filmes biodegradáveis. Universidade Estadual de Ponta Grossa.
rance. (1993). Décret no 93-1074 du 13 septembre 1993 pris pour l’application de la loi du 1er août 1905 em ce qui concerne certaines catégories de pains. Recuperado de https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000727617/.
Frota, K. de M. G., Morgano, M. A., Silva, M. G. da, Araújo, M. A. da M., & Moreira-Araújo, R. S. dos R. (2009). Utilização da farinha de feijão-caupi (Vigna unguiculata L. Walp) na elaboração de produtos de panificação. Food Science and Technology, 30(suppl 1), 44–50. https://doi.org/10.1590/S0101-20612009005000003
Gallagher, E., Gormley, T., & Arendt, E. (2003). Crust and crumb characteristics of gluten free breads. Journal of Food Engineering, 56(2–3), 153–161. https://doi.org/10.1016/S0260-8774(02)00244-3
Gallagher, E., Gormley, T., & Arendt, E. (2004). Recent advances in the formulation of gluten-free cereal-based products. Trends in Food Science & Technology, 15(3–4), 143–152. https://doi.org/10.1016/j.tifs.2003.09.012
Gänzle, M. G., Loponen, J., & Gobbetti, M. (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science & Technology, 19(10), 513–521. https://doi.org/10.1016/j.tifs.2008.04.002
Gänzle, M. G., Vermeulen, N., & Vogel, R. F. (2007). Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiology, 24(2), 128–138. https://doi.org/10.1016/j.fm.2006.07.006
Gobbetti, M., De Angelis, M., Di Cagno, R., Calasso, M., Archetti, G., & Rizzello, C. G. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 302, 103–113. https://doi.org/10.1016/j.ijfoodmicro.2018.05.018
Gobbetti, M., Rizzello, C. G., Di Cagno, R., & De Angelis, M. (2014). How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, 37, 30–40. https://doi.org/10.1016/j.fm.2013.04.012
Granato, D., de Araújo Calado, V. M., & Jarvis, B. (2014). Observations on the use of statistical methods in Food Science and Technology. Food Research International, 55, 137–149. https://doi.org/10.1016/j.foodres.2013.10.024
Gustaw, K., Niedźwiedź, I., Rachwał, K., & Polak-Berecka, M. (2021). New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods, 10(7), 1603. https://doi.org/10.3390/foods10071603
Hallén, E., İbanoğlu, Ş., & Ainsworth, P. (2004). Effect of fermented/germinated cowpea flour addition on the rheological and baking properties of wheat flour. Journal of Food Engineering, 63(2), 177–184. https://doi.org/10.1016/S0260-8774(03)00298-X
Hammes, W. P., Brandt, M. J., Francis, K. L., Rosenheim, J., Seitter, M. F. H., & Vogelmann, S. A. (2005). Microbial ecology of cereal fermentations. Trends in Food Science & Technology, 16(1–3), 4–11. https://doi.org/10.1016/j.tifs.2004.02.010
Hashimoto, J. M., Schmiele, M., & Nabeshima, E. H. (2020). Pasting properties of raw and extruded cowpea cotyledons flours. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.30319
Hashimoto, J. M., Schmiele, M., & Nabeshima, E. H. (2021). Modelling to obtain expanded cowpea products in a twin screw extruder. Brazilian Journal of Food Technology, 24. https://doi.org/10.1590/1981-6723.11120
Henderson, S. M., & Perry, R. L. (1976). Size reduction. (Cap. 6, pp. 130-159). Westport: AVI Publishing. (p. 130–159).
Jagelaviciute, J., & Cizeikiene, D. (2021). The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT, 137, 110457. https://doi.org/10.1016/j.lwt.2020.110457
Kale, R., & Deshmukh, R. (2020). Gluten-free products market by type (bakery products, snacks & rte products, condiments & dressings, pizzas & pastas), distribution channel (conventional stores, specialty stores and drugstores & pharmacies), form & region - global forecast to 2025. https://www.alliedmarketresearch.com/gluten-free-products-market
Kalschne, D. L., Silva-Buzanello, R. A. da, Byler, A. P. I., Scremin, F. R., Magalhães Junior, A. M. de, & Canan, C. (2020). Rice and rice bran from different cultivars: physicochemical, spectroscopic, and thermal analysis characterization. Semina: Ciências Agrárias, 41(6supl2), 3081–3092. https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3081
Kato, L. S. (2014). Caracterização química de feijão para produção de material de referência certificado. Universidade de São Paulo.
Kato, Lilian Seiko, De Nadai Fernandes, E. A., Bacchi, M. A., Sarriés, G. A., & Reyes, A. E. L. (2015). Elemental characterization of Brazilian beans using neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 306(3), 701–706. https://doi.org/10.1007/s10967-015-4212-4
Kim, H. S. (2016). Blood Glucose Measurement: Is Serum Equal to Plasma? Diabetes & Metabolism Journal, 40(5), 365. https://doi.org/10.4093/dmj.2016.40.5.365
Khoury, D., Balfour-Ducharme, S., & Joye, I. J. (2018). A review on the gluten-free diet: Technological and nutritional challenges. Nutrients, 10, 1410. DOI:https://doi.org/10.3390/nu10101410.
Köse, M. A., Ekbiç, E., & Arıcı, Y. K. (2019). Determination of protein, vitamins, amino acids and mineral element content of Yenice and Pinarli bean. Turk J. Food Agric. Sci., 1(1), 6–11.
Lapčíková, B., Burešová, I., Lapčík, L., Dabash, V., & Valenta, T. (2019). Impact of particle size on wheat dough and bread characteristics. Food Chemistry, 297, 124938. https://doi.org/10.1016/j.foodchem.2019.06.005
Lima, L. G., Lima, C. T., Barcia, M. T., & Schmiele, M. (2021). Validação experimental da aplicação de farinhas integrais de sorgo vermelho e feijão-caupi na avaliação de textura da massa e do miolo de bolo tipo muffin. In 14 SLACA - Simpósio Latino Americano de Ciência de Alimentos. Campinas. Brasil.
Lima, L. G., Lima, C. T., Rodrigues, S. M., & Schmiele, M. (2021). Desenvolvimento de bolo sem glúten com farinhas integrais de arroz, sorgo vermelho e feijão-caupi. In VIII Semana da Integração da UFVJM: Ensino, Pesquisa e Extensão. Diamantina; Brasil.
Mastelini, S. M., Sasso, M. G. A., Campos, G. F. C., Schmiele, M., Clerici, M. T. P. S., Barbin, D. F., & Barbon, S. (2018). Computer vision system for characterization of pasta (noodle) composition. Journal of Electronic Imaging, 27(05), 1. https://doi.org/10.1117/1.JEI.27.5.053021
Masure, H. G., Fierens, E., & Delcour, J. A. (2016). Current and forward looking experimental approaches in gluten-free bread making research. Journal of Cereal Science, 67, 92–111. https://doi.org/10.1016/j.jcs.2015.09.009
Merril, A. L., & Watt, B. K. (1973). Energy value of foods: basis and derivation. U.S. Dept. of Agriculture.
Mokrzycki, W., & Tatol, M. (2011). Color difference Delta E – A survey. Machine Graphics and Vision, 20(4), 383–411.
Montoya, C. A., Lallès, J.-P., Beebe, S., & Leterme, P. (2010). Phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolus vulgaris). Food Research International, 43(2), 443–449. https://doi.org/10.1016/j.foodres.2009.09.040
Moroni, A. V., Dal Bello, F., & Arendt, E. K. (2009). Sourdough in gluten-free bread-making: An ancient technology to solve a novel issue? Food Microbiology, 26(7), 676–684. https://doi.org/10.1016/j.fm.2009.07.001
Neves, N. de A., Gomes, P. T. G., Carmo, E. M. R. do, Silva, B. S., Amaral, T. N., & Schmiele, M. (2020). Utilização de fermentação natural e jabuticaba (Plinia cauliflora) para melhoria das características de pães de forma. Research, Society and Development, 9(11), e90691110552. https://doi.org/10.33448/rsd-v9i11.10552
Neves, N. de A., Gomes, P. T. G., & Schmiele, M. (2020). Estudo exploratório sobre a elaboração e avaliação de pães de forma com fermentação natural e adição de polpa de araticum (Annona crassiflora Mart.). Research, Society and Development, 9(9), e956998036. https://doi.org/10.33448/rsd-v9i9.8036
Olapade, A. A., & Oluwole, O. B. (2013). Bread Making Potential of Composite Flour of Wheat-Acha (Digitaria exilis staph) Enriched with Cowpea (Vigna unguiculata L. walp) Flour. Nigerian Food Journal, 31(1), 6–12. https://doi.org/10.1016/S0189-7241(15)30050-3
Olojede, A. O., Sanni, A. I., & Banwo, K. (2020). Rheological, textural and nutritional properties of gluten-free sourdough made with functionally important lactic acid bacteria and yeast from Nigerian sorghum. LWT, 120, 108875. https://doi.org/10.1016/j.lwt.2019.108875
Osborne, T. B. (1924). The vegetable proteins. Journal of the Society of Chemical Industry, 43(17), 440-440. https://doi.org/10.1002/jctb.5000431704.
Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic _Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Phillips, R. D., McWatters, K. H., Chinnan, M. S., Hung, Y.-C., Beuchat, L. R., Sefa-Dedeh, S., & Saalia, F. K. (2003). Utilization of cowpeas for human food. Field Crops Research, 82(2–3), 193–213. https://doi.org/10.1016/S0378-4290(03)00038-8
Reis, A. S., & Schmiele, M. (2021). Custard apple puree, fructooligosaccharide and soy protein hydrolysate as alternative ingredients in low carb pound cake. Journal of Food Science and Technology, 58(9), 3632-3644. https://doi.org/10.1007/s13197-021-05155-9.
Rizzello, C. G., Calasso, M., Campanella, D., Angelis, M., & Gobbetti, M. (2014). Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. International Journal of Food Microbiology, 180, 78–87.
Rocchetti, G., Lucini, L., Rodriguez, J. M. L., Barba, F. J., & Giuberti, G. (2019). Gluten-free flours from cereals, pseudocereals and legumes: Phenolic fingerprints and in vitro antioxidant properties. Food Chemistry, 271, 157–164. https://doi.org/10.1016/j.foodchem.2018.07.176
Rodrigues, S. M., Teotônio, D. O., Andressa, I., Nascimento, G. K. S., Pereira, P. A. P., & Schmiele, M. (2021). Aplicação de crioprotetores em massa congelada de pão sem glúten. In IV Simpósio de Engenharia de Alimentos. Montes Claros.
Santos, J. L., Gomes, L. R., Nascimento, G. K. S., & Schmiele, M. (2021). Elaboração de barra de cereais com uso de resíduo de mosturação de cerveja desidratado, proteína hidrolisada de soja e gelatina. In VIII Semana da Integração da Ufvjm: Ensino, Pesquisa e Extensão. Diamantina; Brasil.
Santos, V. S., Rodrigues, R. S., Jaekel, L. Z., Chang, Y. K., & Schmiele, M. (2017). Dough rheology and technological characteristics of pan bread elaborated with the partial replacement of wheat flour via isolated soy protein and transglutaminase. (p. 219–246). Nova Science Publishers.
Schmiele, M., Silveira, M. P., Leite, L. L., Felisberto, M. H. F., Clerici, M. T. P. S., & Chang, Y. K. (2019). Macarrão instantâneo fonte de proteína e com alto teor de fibra alimentar (p. 893–901). Montes Claros: ICA/UFMG.
Schmiele, Marcio, Ferrari Felisberto, M. H., Pedrosa Silva Clerici, M. T., & Chang, Y. K. (2017). MixolabTM for rheological evaluation of wheat flour partially replaced by soy protein hydrolysate and fructooligosaccharides for bread production. LWT - Food Science and Technology, 76, 259–269. https://doi.org/10.1016/j.lwt.2016.07.014
Schmiele, Marcio, Sampaio, U. M., & Pedrosa Silva Clerici, M. T. (2019). Basic Principles. In Starches for Food Application (p. 1–22). Elsevier. https://doi.org/10.1016/B978-0-12-809440-2.00001-0
Schmiele, Marcio, Silva, L. H. da, Costa, P. F. P. da, Rodrigues, R. da S., & Chang, Y. K. (2011). Influência da adição de farinha integral de aveia, flocos de aveia e isolado proteico de soja na qualidade tecnológica de bolo inglês. Boletim do Centro de Pesquisa de Processamento de Alimentos, 29(1). https://doi.org/10.5380/cep.v29i1.22751
Shevkani, K., Kaur, A., Kumar, S., & Singh, N. (2015). Cowpea protein isolates: Functional properties and application in gluten-free rice muffins. LWT – Food Science and Technology, 63(2), 927–933.
Skendi, A., Papageorgiou, M., & Varzakas, T. (2021). High Protein Substitutes for Gluten in Gluten-Free Bread. Foods, 10(9), 1997. https://doi.org/10.3390/foods10091997
Souza, A. R., Costa, B. A. F., Amaral, E. F. G., Santos, B, T., Clerici, M. T. P. S., & Schmiele, M. (2017). Crioprotetores melhoram as propriedades de pasta da farinha de arroz para panificação sem glúten. In III JEA- Jornada Regional Sudeste de Engenharia de Alimentos. Diamantina.
Souza, E. C., Cordeiro, D. A., & Schmiele, M. (2021). Desempenho do bagaço de oliva, azeite de oliva extravirgem e proteína hidrolisada de soja em muffins. In VIII Semana da Integração UFVJM: Ensino, Pesquisa e Extensão. Diamantina; Brasil.
Tasiguano, B. L., Villarreal, C., Schmiele, M., & Vernaza, M. G. (2019). Efecto del tiempo de Cocción del Zapallo (Cucurbita maxima) y la adición de Glucosa Oxidasa en el Aumento de Almidón Resistente del Pan de Molde. Información tecnológica, 30(3), 167–178. https://doi.org/10.4067/S0718-07642019000300167
Teotônio, D. de O., Costa, B. A. F. da, Gomes, P. T. G., Santos, M. P., Amaral, E. F. G., Clerici, M. T. P. S., & Schmiele, M. (2021). Fructo-oligosaccharides, hydrolyzed soy protein and yeast (Saccharomyces sp.) extract as potential cryoprotectans in gluten-free frozen dough and bread quality. Research, Society and Development, 10(3), e44510313556. https://doi.org/10.33448/rsd-v10i3.13556
Teotônio, D. de O., Rodrigues, S. M., Leoro, M. G. V., Pereira, P. A. P., & Schmiele, M. (2021). Potentialities of using cryoprotectants in gluten-free frozen dough and microwave baking as an emerging technology. Research, Society and Development, 10(6), e12410615674. https://doi.org/10.33448/rsd-v10i6.15674
Vagadia, B. H., Vanga, S. K., & Raghavan, V. (2017). Inactivation methods of soybean trypsin inhibitor – A review. Trends in Food Science & Technology, 64, 115–125. https://doi.org/10.1016/j.tifs.2017.02.003
Van Kerrebroeck, S., Maes, D., & De Vuyst, L. (2017). Sourdoughs as a function of their species diversity and process conditions, a meta-analysis. Trends in Food Science & Technology, 68, 152–159. https://doi.org/10.1016/j.tifs.2017.08.016
Vasantharaja, R., Abraham, L. S., Inbakandan, D., Thirugnanasambandam, R., Senthilvelan, T., Jabeen, S. K. A., & Prakash, P. (2019). Influence of seaweed extracts on growth, phytochemical contents and antioxidant capacity of cowpea (Vigna unguiculata L. Walp). Biocatalysis and Agricultural Biotechnology, 17, 589–594. https://doi.org/10.1016/j.bcab.2019.01.021
Wójcik, M., Różyło, R., Schönlechner, R., & Berger, M. V. (2021). Physico-chemical properties of an innovative gluten-free, low-carbohydrate and high protein-bread enriched with pea protein powder. Scientific Reports, 11(1), 14498. https://doi.org/10.1038/s41598-021-93834-0
Wong, D. W. S. (2018). Mechanism, and Theory in Food Chemistry. Springer International Publishing.
Worku, A., & Sahu, O. (2017). Significance of fermentation process on biochemical properties of Phaseolus vulgaris (red beans). Biotechnology Reports, 16, 5–11. https://doi.org/10.1016/j.btre.2017.09.001
Xu, Z., Lu, Z., Soteyome, T., Ye, Y., Huang, T., Liu, J., & Peters, B. M. (2021). Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae : coexistence-relevant mechanisms. Critical Reviews in Microbiology, 47(3), 386–396. https://doi.org/10.1080/1040841X.2021.1893265
Yang, Q.-Q., Gan, R.-Y., Ge, Y.-Y., Zhang, D., & Corke, H. (2018). Polyphenols in Common Beans ( Phaseolus vulgaris L.): Chemistry, Analysis, and Factors Affecting Composition. Comprehensive Reviews in Food Science and Food Safety, 17(6), 1518–1539. https://doi.org/10.1111/1541-4337.12391
Zaheer, M., Ahmed, S., & Hasan, M. (2020). Vigna unguiculata (L.) Walp. (Papilionaceae): A review of medicinal uses, phytochemistry and pharmacology. Journal of Pharmacognosy and Phytochemistry.
Zanotto, D. L., & Bellaver, C. (1996). Método de determinação da granulometria de ingredientes para uso em rações de suínos e aves. Condórdia: EMBRAPA.
Zapata-Luna, R. L., Ayora-Talavera, T., Pacheco, N., García-Márquez, E., Espinosa-Andrews, H., Ku-González, Á., & Cuevas-Bernardino, J. C. (2021). Physicochemical, morpho-structural and rheological characterization of starches from three Phaseolus spp. landraces grown in Chiapas. Journal of Food Measurement and Characterization, 15(2), 1410–1421. https://doi.org/10.1007/s11694-020-00739-z
Ziobro, R., Witczak, T., Juszczak, L., & Korus, J. (2013). Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocolloids, 32(2), 213–220. https://doi.org/10.1016/j.foodhyd.2013.01.006
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Juliana Dara Rabêlo Silva; Guilherme Caldeira Rosa; Nathália de Andrade Neves; Maria Gabriela Vernaza Leoro; Marcio Schmiele
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.