Plantas brasileñas con acción anticolinesterasa – una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.24262

Palabras clave:

Plantas brasileñas; Actividad anticolinesterasa; Enfermedad de Alzheimer.

Resumen

Brasil tiene una gran flora distribuida por todo su territorio, que contiene la mayor diversidad genética de especies del mundo, muchas de ellas utilizadas con fines terapéuticos. Las plantas son la mejor fuente para descubrir compuestos bioactivos contra las enfermedades. La enfermedad de Alzheimer es una enfermedad neurodegenerativa caracterizada por la pérdida de memoria, que afecta principalmente a la población mayor de 65 años. Este trabajo describe un relevamiento de extractos y aceites obtenidos de plantas de la flora brasileña con potencial acción anticolinesterasa. Se realizó una revisión bibliográfica sistemática de la producción científica en bases de datos de CAPES, Google Scholar, PubMed, Scielo, Science Direct, SciFinder, Scopus y Web of Science. Se seleccionaron cuarenta artículos publicados entre 2011 y 2021. Se identificaron 152 especies vegetales, distribuidas en 49 familias botánicas, donde la Fabaceae fue la más citada con 32 especies (21,05%). La producción de extracto fue la forma principal elegida, 253 veces (93,36%). Las hojas fueron las partes más utilizadas, 94 veces (43,12%). Las extracciones con etanol se destacaron 140 veces (51,66%). La mayoría de los ensayos evaluaron la inhibición de la acetilcolinesterasa en microplacas de 96 pocillos, 182 ensayos (54,17%). De todas las especies notificadas, 110 promovieron la inhibición, de las cuales el 66,36% tuvo una intensidad alta. El estudio alcanzó su objetivo al mostrar resultados relevantes en la inhibición de la AChE, sin embargo cabe mencionar que dado el tamaño de nuestra flora, pocas especies fueron investigadas, ni tampoco testadas in vivo para corroborar los resultados de los ensayos in vitro.

Citas

Alves, D. R., Morais, S. M., Tomiotto-Pellissier, F., Miranda-Sapla, M. M., Vasconcelos, F. R., Silva, I. N. G., Sousa, H. A., Assolini, J. P., Conchon-Costa, I., & Pavanelli, W. R. (2017). Flavonoid composition and biological activities of ethanol extracts of Caryocar coriaceum Wittm., a native plant from Caatinga Biome. Evidence-Based Complementary And Alternative Medicine, 2017, Article 6834218. http://dx.doi.org/10.1155/2017/6834218

Araújo, C. R. M., Santos, V. L. A., & Gonsalves, A. A. (2016). Acetylcholinesterase - AChE: a pharmacological interesting enzyme. Revista Virtual de Química, 8(6), 1818-1834. http://dx.doi.org/10.21577/1984-6835.20160122

Barbosa, D. C. S., Holanda, V. N., Assis, C. R. D., Aguiar, J. C. R. O. F., Nascimento, P. H., Silva, W. V., Navarro, D. M. A. F., Silva, M. V., Lima, V. L. M., & Correia, M. T. S. (2020). Chemical composition and acetylcholinesterase inhibitory potential, in silico, of Myrciaria floribunda (H. West ex Willd.) O. Berg fruit peel essential oil. Industrial Crops & Products, 151(2020), 112372. https://doi.org/10.1016/j.indcrop.2020.112372

Biradar, S. M., Joshi, H., & Chheda, T. K. (2012). Neuropharmacological effect of Mangiferin on brain cholinesterase and brain biogenic amines in the management of Alzheimer's disease. European journal of pharmacology, 683(1-3), 140–147. https://doi.org/10.1016/j.ejphar.2012.02.042

Calixto Júnior, J. T., Morais, S. M., Vieira, L. G., Alexandre, J. B., Costa, M. S., Morais-Braga, M. F. B., Júnior, J. E. G. L., Silva, M. M. O., Barros, L. M., & Coutinho, H. D. M. (2015). Phenolic composition and anticholinesterase, antioxidant, antifungal and antibiotic modulatory activities of Prockia crucis (Salicaceae) extracts collected in the Caatinga biome of Ceará State, Brazil. European Journal of Integrative Medicine, 7(5), 547–555. https://doi.org/10.1016/j.eujim.2015.04.006

Carvalho, N. K. G., Camilo, C. J., Nonato, C. F. A., Leite, D. O. D., Rodrigues, F. F. G., Alves, D. R., Morais, S. M., & Costa, J. G. M. (2021). Essential oil of Cynophalla flexuosa and its cytotoxicity, antioxidant, and anti-acetylcholinesterase effect. Chemistry of Natural Compounds, 57(3), 566–568. https://doi.org/10.1007/s10600-021-03418-7

Dalai, M. K., Bhadra, S., Chaudhary, S. K., Chanda, J., Bandyopadhyay, A., & Mukherjee, P. K. (2014). Anticholinesterase activity of Cinnamomum zeylanicum L. leaf extract. CELLMED, 4(2), 11.1-11.6. https://doi.org/10.5667/tang.2013.0034

Dantas, L. V. B., Lopes, F. F. S., Alves, D. R., Frota, L. S., Cardoso, A. L. H., & Morais, S. M. (2020). Avaliação fitoquímica, quantificação de fenóis e flavonóides totais, atividade antioxidante e antiacetilcolinesterase do extrato etanólico da Talísia esculenta (Pitomba). Brazilian Journal of Development, 6(8), 60597-60602. https://doi.org/10.34117/bjdv6n8-467

Deture, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration, 14(1), 1–18. https://doi.org/10.1186/s13024-019-0333-5

Ellman, G. L., Courtney, K. D., Andres, V. J., & Featherstone, R. M. (1961). A new and rapid colorimetric of acetylcholinesterase determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://dx.doi.org/10.1016/0006-2952(61)90145-9

Farias, D. F., Souza, T. M., Viana, M. P., Soares, B. M., Cunha, A. P., Vasconcelos, I. M., Ricardo, N. M. P. S., Ferreira, P. M. P., Melo, V. M. M., & Carvalho, A. F. U. (2013). Antibacterial, antioxidant, and anticholinesterase activities of plant seed extracts from Brazilian semiarid region. Biomed Research International, 2013(1), Article 510736. http://dx.doi.org/10.1155/2013/510736

Feitosa, C. M., Freitas, R. M., Luz, N. N. N., Bezerra, M. Z. B., & Trevisan, M. T. S. (2011). Acetylcholinesterase inhibition by some promising Brazilian medicinal plants. Brazilian Journal of Biology, 71(3), 783-789. https://doi.org/10.1590/S1519-69842011000400025

Feitosa, C. M., Barbosa, A. R., Melo, C. H. S., Freitas, R. M., Fontes, F. E. N., Costa, E. V., Rashed, K. N. Z., & Costa Júnior, J. S. (2017). Antioxidant and anticholinesterase activities of the essential oil of Eugenia dysenterica DC. African Journal of Pharmacy and Pharmacology, 1(19), 241-249. https://doi.org/10.5897/AJPP2015.4438

Fernandes, R. M. N., Rodrigues, M. A. M., Panontin, J. F., Alves, D. R., Morais, S. M., Soares, I. M., & Scapin, E. (2021). Chemical investigation, toxic potential and acetylcholinesterase inhibitory effect of Parkia platycephala leaf and seed extracts. Journal of Medicinal Plants Research, 15(9), 401-412. https://doi.org/10.5897/JMPR2021.7158

Formagio, A. S., Vieira, M. C., Volobuff, C. R., Silva, M. S., Matos, A. I., Cardoso, C. A., Foglio, M. A., & Carvalho, J. E. (2015). In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae. Brazilian Journal of Medical and Biological Research, 48(4), 308-315, http://dx.doi.org/10.1590/1414-431X20144127.

Frias, U. A., Costa, M. C. M., & Takahashi, J. A. (2011). Caracterização fitoquímica e avaliação das atividades antibacteriana e anticolinesterásica de extratos de Banisteriopsis anisandra A. Juss. (Malpighiaceae). Revista Cubana de Plantas Medicinales, 16(1), 60-71. http://scielo.sld.cu

Frota, L. S., Lopes, F. F. S., Alves, D. R., Freitas, L. S., Franco, G. M. G., & Morais, S. M. de. (2021). Composição química e avaliação das atividades antioxidante e anticolinesterásica do óleo dos frutos de Ouratea fieldingiana (Gargner) Engl. Research, Society and Development, 10(10), e532101019013. https://doi.org/10.33448/rsd-v10i10.19013

Galvão, T. F., Pansani, T. S. A., & Harrad, D. (2015). Principais itens para relatar revisões sistemáticas e meta-análises: A recomendação PRISMA.

Epidemiologia e Serviços de Saúde, 24(2), 335–342. https://doi.org/10.5123/S1679-49742015000200017

Gasca, C. A., Moreira, N. C. S., Almeida, F. C., Gomes, J. V. D., Castillo, W. O., Fagg, C. W., Magalhães, P. O., Fonseca-Bazzo, Y. M., Sakamoto-Hojo, E., & Medeiros, Y. K. (2020). Acetylcholinesterase inhibitory activity, anti-inflammatory, and neuroprotective potential of Hippeastrum psittacinum (Ker Gawl.) herb (Amaryllidaceae). Food And Chemical Toxicology, 145, Article 111703. https://doi.org/10.1016/j.fct.2020.111703

Guerra, D. L., Rodrigues, A. L. M., Alves, D. R., Silveira, E. R., Morais, S. M. (2021). Intraspecific variation of the chemical composition and antioxidant and anticholinesterase activities of essential oils and phenolic content of four Croton blanchetianus Baill specimens. In Morais, S. M. (Org.), Biotechnological potential of essential oils from native and cultivated plants in Brazil, (42-51). Editora Poisson. http://dx.doi.org/10.36229/978-65-5866-092-7.cap.03

Jung, K., Lee, B. Han, S. J., Ryu, J. H., Kim, D. H. (2009). Mangiferin Ameliorates Scopolamine-Induced Learning Deficits in Mice. Biological & Pharmaceutical Bulletin, 32(2), 242-246. http://dx.doi.org/10.1248/bpb.32.242

Lima, B. G., Tietbohl, L. A. C., Fernandes, C. P., Cruz, R. A. S., Botas, G. S., Santos, M. G., Silva-Filho, M. V., & Rocha, L. (2012). Chemical composition of essential oils and anticholinesterasic activity of Eugenia sulcata Spring ex Mart. Latin American Journal of Pharmacy, 1(31), 152-155. https://www.researchgate.net/publication/274836495

Lima, L. R., Andrade, F. K., Alves, D. R., Morais, S. M., & Vieira, R. S. (2021). Anti-acetylcholinesterase and toxicity against Artemia salina of chitosan microparticles loaded with essential oils of Cymbopogon flexuosus, Pelargonium x ssp and Copaifera officinalis. International Journal of Biological Macromolecules, 167(1) 1361-1370. https://doi.org/10.1016/j.ijbiomac.2020.11.090

Magalhães, P. K. A., Araujo, E. N., Santos, A. M., Vanderlei, M. B., Souza, C. C. L., Correia, M. S., Fonseca, S. A., Pavão, J. M. J. S., Souza, M. A., Costa, J. G., Santo, A. F., & Matos-Rocha, T. J. (2022). Ethnobotanical and ethnopharmacological study of medicinal plants used by a traditional community in Brazil’s northeastern. Brazilian Journal of Biology, 82, e237642. https://doi.org/10.1590/1519-6984.237642

Marques, T. H. C., Santos, P. S., Freitas, R. M., Carvalho, R. B. F., Melo, C. H. S., David, J. P., David, J. M., & Lima, L. S. (2013). Atividade anticolinesterásica e perfil químico de uma fração cromatográfica ativa do extrato etanólico das flores Bellis perennis L. (Asteraceae). Química nova, 36(4), 549-553. https://doi.org/10.1590/S0100-40422013000400012

Martins, G. V., Alves, D. R., Viera-Araújo, F. M., Rondon, F., Braz-Filho, R., & Morais, S. M. (2018). Chemical study and evaluation of antioxidant, anti-acetylcholinesterase and antileishmanial activities of extracts from Jatropha gossypifolia L. (Pião Roxo). Revista Virtual de Química, 10(1)21-36. http://dx.doi.org/10.21577/1984-6835.20180004

Martins, N. O., Brito, I. M., Araújo, S. S. O., Negri, G., Carlini, E. A., & Mendes, F. R. (2018) Antioxidant, anticholinesterase and antifatigue effects of Trichilia catigua (Catuaba). BMC Complementary and Alternative Medicine, 18(1), 1-13. https://doi.org/10.1186/s12906-018-2222-9

Morais, S. M., Lima, K. S. B., Siqueira, S. M. C., Cavalcanti, E. S. B., Souza, M. S. T., Menezes, J. E. S. A., & Trevisan, M. T. S. (2013). Correlation between antiradical, anti-acetylcholinesterase activities and total phenol content of medicinal plant extracts from live pharmacies. Revista Brasileira de Plantas Medicinais, 15(4), 575-582. https://dx.doi.org/10.1590/S1516-05722013000400014

Morais, S. M., Calixto-Júnior, J. T., Ribeiro, L. M., Sousa, H. A., Silva, A. A. S., Figueiredo, F. G., Matias, E. F. F., Boligon, A. A., Athayde, M. .L., Morais-Braga, M. F. B., & Coutinho, H. D. M. (2017). Phenolic composition and antioxidant, anticholinesterase and antibiotic-modulating antifungal activities of Guazuma ulmifolia Lam. (Malvaceae) ethanol extract. South African Journal of Botany, 110 (2017), 251-257. http://dx.doi.org/10.1016/j.sajb.2016.08.003

Morais, S. M., Alves, D. R., Frota, L. S., Pinheiro, S. de O., Silva, A. C. S., & Silva, W. M. B. (2020). Atividades antioxidantes e anticolinesterásicas do extrato das folhas de Jaramataia (Vitex gardneriana Schauer). Brazilian Journal of Development, 6(5), 28802–28810. https://doi.org/10.34117/bjdv6n5-358

Morais, S. M., Lopes, F. F. S., Fontenele, G. A., Silva, M. V. F., Fernandes, V. B., & Alves, D. R. (2021). Total phenolic content and antioxidant and anticholinesterase activities of medicinal plants from the State’s Cocó Park (Fortaleza-CE, Brazil). Research, Society And Development, 10(5), e7510514493. http://dx.doi.org/10.33448/rsd-v10i5.14493

Mota, W. M., Barros, M. L., Cunha, P. E. L., Santana, M. V. A., Stevam, C. S., Leopoldo, P. T. G., & Fernandes, R. P. M. (2012). Avaliação da inibição da acetilcolinesterase por extratos de plantas medicinais. Revista Brasileira de Plantas Medicinais, 14(4), 624-628. https://dx.doi.org/10.1590/S1516-05722012000400008

Nascimento, J. E. T.; Rodrigues, A. L. M.; Lisboa, D. S.; Liberato, H. R.; Falcão, M. J. C.; Silva, C. R.; Nobre Júnior, H. V.; Braz Filho, R.; Paula Junior, V. F., & Alves, D. R. (2018). Chemical composition and antifungal in vitro and in silico, antioxidant, and anticholinesterase activities of extracts and constituents of Ouratea fieldingiana (DC.) Baill. Evidence-Based Complementary And Alternative Medicine, 2018, Article 1748487, 1-12. https://doi.org/10.1155/2018/1748487

Oliveira, A. S., Zapp, E., Brondani, D., Hoppe, T. D., Meier, L., & Brighente, I. M. C. (2019). Investigation of antioxidant activity, acute toxicity and anticholinesterasic potential of Lippia hirta (Verbenaceae). Revista Virtual de Química, 11(2), 432-448. https://rvq-sub.sbq.org.br/index.php/rvq/article/view/3148

Oliveira, D. P., Cavalcanti, E. S. B., Morais, S. M., Pinto, C. C. C., Lopes, F. F. S., Rodrigues, A. L. M., Alves, D. R., & Maia, A. I. V.. (2021). Perfil cromatográfico por HPLC-DAD, potencial antiacetilcolinesterase e toxicidade de extratos etanólicos da espécie Bauhinia Monandra. Brazilian Journal of Development, 7(1), 1183–1197. https://dx.doi.org/10.34117/bjdv7n1-080

Omena, C. M. B., Valentim, I. B., Guedes, G. S., Rabelo, L. A., Mano, C. M., Bechara, E. J. H., Sawaya, A. C. H. F., Trevisan, M. T. S., Costa, J. G., & Ferreira, R. C. S. (2012). Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic brazilian fruits. Food Research International, 49(2012), 334-344. https://dx.doi.org/10.1016/j.foodres.2012.07.010

Paredes, P. F. M., Vasconcelos, F. R., Paim, R. T. T., Marques, M. M. M., Morais, S. M., Lira, S. M., Braquehais, I. D., Vieira, I. G. P., Mendes, F. N. P., & Guedes, M. I. F. (2016). Screening of bioactivities and toxicity of Cnidoscolus quercifolius Pohl. Evidence-Based Complementary and Alternative Medicine, Article 7930563, 1-9. http://dx.doi.org/10.1155/2016/7930563

Patel, S. S., Raghuwanshi, R., Masood, M., Acharya, A., & Jain, S. K. (2018). Medicinal plants with acetylcholinesterase inhibitory activity. Reviews in the Neurosciences, 29(5), 491-529. https://dx.doi.org/10.1515/revneuro-2017-0054

Pedroso, T. F. M., Bonamigo, T. R., Silva, J., Vasconcelos, P., Félix, J. M., Cardoso, C. A. L., Souza, R. I. C., Santos, A. C., Volobuff, C. R. F., & Formagio, A. S. N. (2019). Chemical constituents of Cochlospermum regium (Schrank) Pilg. root and its antioxidant, antidiabetic, antiglycation, and anticholinesterase effects in wistar rats. Biomedicine & Pharmacotherapy, 111, 1383-1392. https://doi.org/10.1016/j.biopha.2019.01.005

Penido, A. B., Morais, S. M., Ribeiro, A. B., & Silva, A. Z. (2016). Ethnobotanical study of medicinal plants in Imperatriz, state of Maranhão, Northeastern Brazil. Acta Amazonica, 46(4), 345–354. https://doi.org/10.1590/1809-4392201600584

Penido, A. B., Morais, S. M., Ribeiro, A. B., Alves, D. R., Rodrigues, A. L. M., Santos, L. H., & Menezes, J. E. S. A. (2017). Medicinal plants from northeastern Brazil against Alzheimer’s disease. Evidence-Based Complementary and Alternative Medicine, 1, 1753673. https://dx.doi.org/10.1155/2017/1753673

Pereira, V. V., Silva, R. R., Dos Santos, M., Dias, D. F., Moreira, M., & Takahashi, J.A. (2015). Antioedematogenic activity, acetylcholinesterase inhibition and antimicrobial properties of Jacaranda oxyphylla. Natural Product Research, 30(17), 1974-1979. http://dx.doi.org/10.1080/14786419.2015.1095744

Pereira, E. J. P., Vale, J. P. C., Silva, P. T., Lima, J. R., Alves, D. R., Costa, P. S., Rodrigues, T. H. S., Menezes, J. E. S. A., Morais, S. M., Bandeira, P. N., Fontenelle, R. O. S., & Santos, H. S. (2018). Circadian rhythm, and antimicrobial and anticholinesterase activities of essential oils from Vitex gardneriana. Natural Product Communications, 13(5), 635-638. https://doi.org/10.1177/1934578X1801300528

Rhee, I. K., Van der Meent, M., Ingkaninan, K., & Verpoorte, R. (2001). Screening for acetylcholinesterase inhibitors from from Amararyllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. Journal of Chromatography A, 915(1–2), 217–223. https://doi.org/10.1016/S0021-9673(01)00624-0

Ribeiro, P. R. E., Carvalho Neto, M. F., Chagas, E. A., Chagas, P. C., Takahashi, J. A., Melo, A. C. G. R., Santos, R. C. S., & Melo Filho, A. A. (2019). Acetylcolonesterase inhibitor potential in cinnamon seed oil (Cinnamomum zeylanicum Nees) Lauraceae in Roraima, Brazil. Chemical Engineering Transactions, 75(1), 361-366. https://doi.org/10.3303/CET1975061

Santos, F. O., Lima, H. G., Rosa, S. S. S., Mercês, N. B., Serra, T. M., Uzeda, R. S., Reis, I. M. A., Botura, M. B., Branco, A., & Batatinha, M. J. M. (2018). In vitro acaricide and anticholinesterase activities of digitaria insularis (Poaceae) against Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 255, 102-106. https://doi.org/10.1016/j.vetpar.20 18.04.003

Santos, R. C. S., Melo Filho, A. A., Chagas, E. A., Takahashi, J. A., Ferraz, V. P., Fernandez, I M., Ribeiro, P. R. E., Melo, A. C. G. R., & Holanda, L. C. (2015). Chemical composition, antimicrobial and anti-acetylcholinesterase activities of essential oil from Lantana camara (Verbenaceae) flowers. Journal of Medicinal Plants Research, 9(35), 922-928. http://dx.doi.org/10.5897/jmpr2015.5919

Santos, T. C., Gomes, T. M., Pinto, B. A. S., Camara, A. L., & Paes, A. M. A. (2018). Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer's disease therapy. Frontiers in Pharmacology, 9, 1192. https://dx.doi.org/10.3389/fphar.2018.01192

Santos, W. P., Carvalho, A. C. S., Estevam, C. S., Santana, A. E. G., & Marçal, R. M. (2012). In vitro and ex vivo anticholinesterase activities of Erythrina velutina leaf extracts. Pharmaceutical Biology, 50(7), 919-924. http://dx.doi.org/10.3109/13880209.2011.649429

Silva, A. A. S., Ferreira Júnior, J. M., Silva, M. G. V., & Morais, S. M. (2014). Phytochemistry and biological activities little lemon (Zanthoxylum syncarpum Tull.). Revista Brasileira de Higiene e Sanidade Animal, 8(1), 37-53. http://dx.doi.org/10.5935/1981-2965.20140003

Silva, A. A. S., Alexandre, J. B., Vieira, L. G., Rodrigues, S. P., Falcão, M. J. C., & Morais, S. M. M. (2015). Estudo fitoquímico e atividades leishmanicida, anticolinestarásica e antioxidante de extratos de Annona glabra L. (Araticum Panã). Revista de Ciências Farmacêuticas Básica e Aplicada, 36(2),189-194. https://rcfba.fcfar.unesp.br/index.php/ojs/article/view/43/42

Silva, J. K. R., Pinto, L. C., Burbano, R. M. R., Montenegro, R. C., Guimarães, E. F., Andrade, E. H. A., & Maia, J. G. S. (2014). Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Industrial Crops And Products, 58(1), 55-60. http://dx.doi.org/10.1016/j.indcrop.2014.04.006

Silva, S. G., Costa, R. A., Oliveira, M. S., Cruz, J. N., Figueiredo, P. L. B., Brasil, D. S. B., Nascimento, L. D., Chaves Neto, A. M. J., Carvalho Junior, R. N., & Andrade, E. H. A.(2019). Chemical profile of Lippia thymoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations, PLoS ONE, 14(3), e0213393. https://doi.org/10.1371/journal.pone.0213393.

Trevisan, M. T. S., Bezerra, M. Z. B., Santiago, G. M. P., Feitosa, C. M., Verpoorte, R. Braz Filho, R. (2006). Atividades larvicida e anticolinesterásica de plantas do gênero Kalanchoe. Química Nova, 29(3), 415-418. http://dx.doi.org/10.1590/s0100-40422006000300002.

Valli, M., Young, M. C. M., & Bolzani, V. S. The invisible beauty of the biodiversity: the rubiaceae taxon. (2016). Revista Virtual de Química, 8(1), 296-310. https://doi.org/10.5935/1984-6835.20160020

Vinutha, B., Prashanth, D., Salma, K., Sreeja, S. L., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., Deepak, M. (2007). Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. Journal of Ethnopharmacology, 109, 359–363. https://doi.org/10.1016/j.jep.2006.06.014

Yamaguchi, K. K. L., Alcântara, J. M., & Veiga Junior, V. F. (2012). Investigação do potencial antioxidante e anticolinesterásico de 20 espécies da família Lauraceae. Acta Amazônia, 42(4), 541–546. https://doi.org/10.1590/S0044-59672012000400012

Publicado

02/01/2022

Cómo citar

LOPES, F. F. da S. .; FROTA, L. S. .; FONTENELE, G. A. .; SILVA, M. V. F. da .; FERNANDES, V. B. .; MONTES, R. A. .; MORAIS, S. M. de . Plantas brasileñas con acción anticolinesterasa – una revisión. Research, Society and Development, [S. l.], v. 11, n. 1, p. e6211124262, 2022. DOI: 10.33448/rsd-v11i1.24262. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24262. Acesso em: 7 ene. 2025.

Número

Sección

Revisiones