Optimización de la producción de pigmento por Rhodotorula minuta URM 5197 y Rhodotorula mucilaginosa URM 7409 utilizando cáscara de maracuyá - amarillo (Passiflora edulis)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i17.24311

Palabras clave:

Bioprocesos; Carotenoides; Residuos Agroindustriales; Superficie de respuesta.

Resumen

El objetivo de este trabajo fue optimizar la producción de pigmentos de Rhodotorula minuta y Rhodotorula mucilaginosa mediante fermentación sumergida, utilizando como único sustrato la piel de maracuyá - amarillo (Passiflora edulis). Las variables independientes evaluadas en relación a la optimización fueron: piel de maracuyá amarilla (PMA), en gramos (g) como medio de cultivo, pH y tiempo de fermentación, en días. El estudio de la producción de pigmentos y su optimización se realizó utilizando la matriz de Doehlert, con quince condiciones experimentales, de las cuales trece tenían combinaciones diferentes y dos repetían el punto central. Las variables fijas fueron 30ºC y 150 rpm. El análisis de los datos se realizó con el software Statistica versión 10.0. La mayor cantidad de pigmentos totales y carotenoides totales producidos por R. minuta fue 28±0.01 mg/L y 72.8±0.026 µg /g, respectivamente; mientras que para R. mucilaginosa la producción de pigmentos totales fue 37±0.002 mg/L y carotenoides totales 236.8 ± 0.013 µg/g. El punto óptimo de producción de pigmentos totales para R. minuta fue 2.3 g de PMA, pH 6.5 y 5 días y para R. mucilaginosa 2.5 g de PMA, pH 6 y 5 días. En muestras de pigmentos totales se identificó la presencia de 0.29 mg/L de β-caroteno para R. minuta y 0.83 mg/L para R. mucilaginosa. Es posible concluir que la cáscara amarilla de maracuyá se puede utilizar como fuente de nutrientes para el crecimiento de Rhodotorula spp y la producción de pigmentos con carotenoides totales y β-caroteno en su composición.

Biografía del autor/a

Thamilly Moreira Silva, State University of Southwest Bahia

Graduada em Nutrição, Especialista (Latu-sensu) em Nutrição Clínica e Saúde Pública, Doutoranda em Bioquímica e Biologia Molecular.

Abdias Batista da Silva Neto, University of Santa Cruz

Graduado em Ciências Biológicas e Mestrando em Biologia e Biotecnologia de Microrganismos.

Jabson Meneses Teixeira, University of Santa Cruz

Graduado em Ciências Biológicas e Mestrando em Biologia e Biotecnologia de Microrganismos.

Carlos Bernard Moreno Cerqueira-Silva, State University of Southwest Bahia

Graduado em Ciências Biológicas, Especialista (Latu-sensu) em Genética, Mestre e Doutor em Genética e Biologia Molecular. Professor Adjunto da Universidade Estadual do Sudoeste da Bahia (UESB). 

Simone Andrade Gualberto, State University of Southwest Bahia

Graduada em Farmácia, Especialização (Latu-sensu) em Desenho de Fármacos, Doutorado em Ciências Farmacêuticas, Pós-doutorado em Química de Produtos Naturais na Universidad de Salamanca (USAL) -  Salamanca - Espanha. Professora Pleno da Universidade Estadual do Sudoeste da Bahia (UESB).

Janaína Silva de Freitas, State University of Southwest Bahia

Graduada (Licenciada e Bacharel) em Ciências Biológicas, Doutora em Bioquímica. Professora Titular da Universidade Estadual do Sudoeste da Bahia (UESB). 

Citas

Aruldas, C. A., Dufossé, L. & Ahmad, W. A. (2018). Current perspective of yellowish – Orange pigments from microorganisms – a review. Journal of Cleaner Production. 180, 168-182. 10.1016/j.jclepro.2018.01.093.

Association of Official Analytical Chemists – AOAC (2016). Official Methods of Analysis of AOAC International.20 th ed. Rockville, Maryland: AOAC International.

Buzzini, P. & Martini, A. (2000). Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresource Technology, 71, 41- 44. 10.1016/S0960-8524(99)00056-5.

Caddick, M. X., Brownlee, A. G. & Arst, H. N. Jr (1986). Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Molecular and General Genetics. 203, 346-353.

Cavalcante, T. Q. & Melo, M. de O. (2019). Utilização de biomassa de maracujá-amarelo (Passiflora edulis f. flavicarpa) in natura como bioadsorvente para remoção de íons de Cd e Pb em meio aquoso. In: XXIII Seminário de Iniciação Científica da UEFS. Semana Nacional de Científica e Tecnológica - 2019, 23. 10.13102/semic.v0i23.6380.

Cheng, Y-T. & Yang, C-F. (2016). Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. Journal of the Taiwan Institute of Chemical Engineers. 61, 270 - 275. 10.1016/j.jtice.2015.12.027.

Davies, B. H. (1976). Chemical Biochemistry Plant Pigments. Academic press, New York, USA.

Delgado-Vargas, F. & Peredes-López, O. (2002). Natural Colorants for Food and Nutraceutical Uses, CRC Press: Boca Raton, FL, USA, 1-344.

Freitas, J. S, Silva, E. M. & Rossi, A. (2007). Identification of nutrient-dependent changes in extracellular pH and acid phosphatase secretion in Aspergillus nidulans. Genetics and Molecular Research. 6 (3), 721-729.

Gerelmaa, Z., Zultsetseg, Ch., Batjargal B. & Rentsenkhand, Ts. (2018). Selection of culture media for the production of carotenoids with antioxidant activity by Rhodotorula glutinis. Proceedings of the Mongolian Academy of Sciences. 58 (4), 31-38. 10.5564/pmas.v58i4.1047.

Gómez-Garcia, M. R. & Ochoa-Alejo, N. (2013). Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). International Journal of Molecular Sciences, 14 (9), 19025 - 19053. 10.3390/ijms140919025.

Guzman, I., Hamby, S., Romero, J., Bosland, P. W. & O’Connell, M. (2010). Variability of carotenoid biosynthesis in Orange colored Capsicum spp. Plant Science. 179 (1-2), 49 - 59. 10.1016/j.plantsci.2010.04.014.

Heer, K. & Sharma, S. (2017). Microbial pigments as a natural color: A Review. International Journal of Pharmaceutical Sciences and Research, 8 (5), 1913-1922.

Kot, A. M., Blazejak, S., Kieliszek, M., Gientka, I., Piwowarek, K. & Brzezińska, R. (2020). Production of lipids and carotenoids by Rhodotorula gracilis ATCC 10788 yeast in a bioreactor using low - cost wastes. Biocatalysis and Agricultural Biotechnology, 26, 1-8. 10.1016/j.bcab.2020.101634.

Kot, A. M., Blazejak, S. & Kurez, A. (2016). Rhodotorula glutinis – potential source of lipids, carotenoids, and enzymes for use in industries. Applied Microbiology and Biotechnology, 100 (14), 6103-6117. 10.1007/s00253-016-7611-8.

Maccheroni., W. Jr., Pombeiro, S. R. C., Martinez-Rossi, N. M. & Rossi, A. (1991). pH and acid phosphatase determinations after growth of Aspergillus nidulans on solid medium. Fungal Genetics Reports, 38 (8), 78-79. 10.4148/1941-4765.1454.

Machado, W. R. C., Soares, B. V. & Del Bianchi, V. L. (2019). Produção de carotenoides por meio de fermentação em estado sólido com Rhodotorula mucilaginosa em bagaço de laranja (Citrus sinensis). Revista de Engenharia e Tecnologia, 11(3), 48-57.

Malisorn, C. & Suntornsuk, W. (2008). Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresource Technology, 99 (7), 2281 - 2287.10.1016/j.biortech.2007.05.019.

Manimala, M. R. A & Murugesan, R. (2017). Carotenoid pigment production from Yeast: Health benefits and their industrial applications. International Journal of Chemistry, 5, 392-395.

Manimala, M. R. A. & Murugusan, R. (2018). Characterization of carotenoid pigment production from yeast Sporobolomyces sp. and their application in food products. Journal of Phamacognosy and Phytochemistry. 7 (1), 2818-2821.

Mata-Gómez, L. C., Montañez, J. C., Méndez-Zavala, A. & Aguilar, C. N. (2014). Biotechnological production of carotenoids by yeasts: an overview. Microbial Cell Factories. 13 (12), 2-11.

Menezes, J. D. S., Druzian, J. I., Padilha, F. F. & Souza, R. R. (2012). Produção Biotecnológica de goma xantana em alguns resíduos agroindustriais, caracterização e aplicações. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 8 (8),1761-1776.

Moliné, M., Libkind, D. & Van Broock, M. (2012). Production of torularhodin, torulene and β-carotene by Rhodotorula yeasts. Methods in Molecular Biology, 898, 275 - 283. 10.1007/978-1-61779-918-1_19.

Moriel, D. G., Chociai, M. B., Machado, I. M. P., Fontana, J. D. & Bonfim, T. M. B. (2005). Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process. Brazilian Archives of Biology and Technology, 48, 397- 401. 10.1590/S151689132005000300010.

Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C. & Pereira, J. F. B. (2018). Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology,103, 1095-1114. 10.1007/s00253-018-9557-5.

Nabi, F., Arain, M. A., Rajput, N., Alagawany, M., Soomro, J., Umer, M., Soomro, F., Wang, Z., Ye, R. & Liu, J. (2020). Health benefits of carotenoids and potential application in poultry industry: A review. Journal of Animal Physiology and Animal Nutrition, 104, 1809-1818. /10.1111/jpn.13375.

Nahas, E., Terenzi, H. F. & Rossi, A. (1982). Effect of carbon source and pH on the production and secretion of acid phosphatase (EC 3.1.3.2) and alkaline phosphatase (EC 3.1.3.1) in Neurospora crassa. Journal of General Microbiology. 128, 2017-2021. 10.1099/00221287-128-9-2017.

Peñalva, M. A. & Arst, H. N. Jr (2004). Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annual Review of Microbiology. 58, 425-451. 10.1146/annurev.micro.58.030603.123715.

Panesar, R., Kaur, S. & Panesar, P. S. (2015). Production of microbial pigments utilizing agro-industrial waste: a review. Current Opinion in Food Science, 1, 70-76. 10.1016/j.cofs.2014.12.002.

Petrik, S., Marova, I., Haronikova, A., Kostovova, I. & Breierova, E. (2013). Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production - a comparative screening study. Annals of Microbiology, 63, 1537-1551. 10.1007/s13213-013-0617-x

Rodrigues, T. A., Schueler, T. A., da Silva, J. R., Sérvulo, E. F. C. & Oliveira, F. J. S. (2019). Valorization of solid wastes from the brewery and biodiesel industries for the bioproduction of natural dye. Brazilian Journal of Chemical Engineering, 36 (1), 99 -107. 10.1590/0104-6632.20190361s20170608.

Sen, T., Barrow, C. J. & Deshmukh, S. K. (2019). Microbial Pigments in the Food Industry - Challenges and the Way Forward. Frontiers in Nutrition, 6 (7), 1-14. 10.3389/fnut.2019.00007.

Silva, J. da, Silva, F. L. H. da, Ribeiro, E. S., Melo, D. J. N. de, Santos, F. A. & Medeiros, L. L. de. (2020). Effect of supplementation, temperature and pH on carotenoids and lipids production by Rhodotorula mucilaginosa on sisal bagasse hydrolyzate. Biocatalysis and Agricultural Biotechnology, 30, 1-7.

Silva, S. R. S., Stamford, T. C. M., Albuquerque, W. W. C., Vidal, E. E. & Stamford, T. L. M. (2020). Reutilization of residual glycerin for the produce b-carotene by Rhodotorula minuta. Biotechnology Letters, 42, 437- 443.

Squina, F. M., Yamashita, F., Pereira, J. L. & Mercadante, A. Z. (2002). Production of carotenoids by Rhodotorula rubra and R. glutinis in culture medium supplemented with sugar cane juice. Food Biotechnology, 16 (3), 227 - 235. 10.1081/FBT-120016776.

Sola, M. C, Oliveira, A. P., Feistel, J. C. & Rezende, C. S. M. (2012). Manutenção de microrganismos: Conservação e Viabilidade. Enciclopédia Biosfera. Centro Científico Conhecer, 8 (14), 1398 - 1418.

Taskin, M., Sisman, T., Erdal, S. & Kurbanoglu, E. B. (2011). Use of waste chicken feathers as peptone for production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. European Food Research and Technology, 223, 657 - 665.

Tinoi, J., Rakariyatham, N. & Deming, R. L. (2005). Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolysed mung bean waste flour as substrate. Process Biochemistry, 40 (7), 2551 - 2557.

Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74 (10), 3583-3597.

Venil, C. K, Zakaria, Z. A. & Ahmad, W. A. (2013). Bacterial pigments and their applications. Process Biochemistry, 48 (7), 1065-1079. 10.1016/j.procbio.2013.06.006.

Viana, L. G. & Cruz, P. S. (2016). Reaproveitamento de Resíduos Agroindustriais. In: Congresso Baiano de Engenharia Sanitária e Ambiental, IV COBESA. 1-3.

Weedon, B. C. L. & Moss, G. P. (1995). Structure and Nomenclature. In Carotenoids; Britton, G., Liaaen-Jensen, S., Pfander, H. P., Eds.; Birkhäuser Verlag: Basel, Switzerland, I B: Spectroscopy, 27-70.

Yadav, K. S. & Prabha, R. (2014). Extraction of Pigments from Rhodotorula Species of Dairy Environment. Indian Journal of Science and Technology, 7 (12),1973-1977. 10.17485/ijst/2014/v7i12.28.

Descargas

Publicado

22/12/2021

Cómo citar

SILVA, T. M. .; SILVA NETO, A. B. da .; TEIXEIRA, J. M. .; CERQUEIRA-SILVA, C. B. M. .; GUALBERTO, S. A.; FREITAS, J. S. de . Optimización de la producción de pigmento por Rhodotorula minuta URM 5197 y Rhodotorula mucilaginosa URM 7409 utilizando cáscara de maracuyá - amarillo (Passiflora edulis) . Research, Society and Development, [S. l.], v. 10, n. 17, p. e152101724311, 2021. DOI: 10.33448/rsd-v10i17.24311. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24311. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas