Curcuminas y sus derivados como potenciales inhibidores de la proteasa principal del Nuevo Coronavirus (COVID-19): una estrategia in silico

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.24334

Palabras clave:

SARS-CoV-2; 3CLpro; Aproximación a nuevas herramientas terapéuticas; Productos naturales.

Resumen

El brote de la enfermedad por coronavirus (COVID-19) ha provocado una pandemia mundial con un poderoso potencial letal y sigue sin un tratamiento específico. En este trabajo se investigaron moléculas bioactivas naturales como las curcuminas, que tienen varias actividades biológicas, con el objetivo de bloquear el sitio activo de la proteasa principal (Mpro) del COVID-19. Através de esto, se evaluó la capacidad de la curcumina y varios derivados para reaccionar con los receptores de la proteína Mpro (PDB: 6LU7). Se evaluaron N3, azitromicina (AZT) y baracitinib (BRT) como controles positivos y en combinación de posibilidades terapéuticas con curcuminas. N3, AZT y BRT se unieron a diferentes receptores de proteínas, y también se observó que N3 se unió en el mismo sitio que la hexahidrocurcumina y el glucurónido de curcumina se unió en el sitio AZT y bisdemetoxicurcumina, curcumina, sulfato de curcumina, ciclocurcumina, desmetoxicurcumina y hexahidrocurcumina en el sitio BRT. Todas las moléculas analizadas tienen campos de interacción de alta resistencia. Dado que la actividad viral es principalmente intracelular, estos compuestos también se evaluaron por sus capacidades hidropáticas. Todas las moléculas fueron clasificadas y consideradas capaces de invadir las membranas celulares. Estos resultados sugieren que el enfoque terapéutico de los derivados de la curcumina asociados con AZT y el inhibidor antivírico N3 es prometedor para la evaluación futura de su sinergia en pruebas in vitro e in vivo para definir su viabilidad adicional en el tratamiento de COVID-19.

Citas

Aboelhadid, S. M., El-Ashram, S., Hassan, K. M., Arafa, W. M., & Darwish, A. B. E. (2019). Hepato-protective effect of curcumin and silymarin against Eimeria stiedae in experimentally infected rabbits. Livestock Science, 221(August 2018), 33–38. https://doi.org/10.1016/j.livsci.2019.01.011

Alves, D. R., da Rocha, M. N., de Sousa, D. S., Oliveira, I. C. M., Marinho, M. M., de Morais, S. M., & Marinho, E. S. (2021). Virtual Screening of Natural Curcumins and Related Compounds Against SARS-CoV-2. Journal of Computational Biophysics and Chemistry, 20(01), 53–70. https://doi.org/10.1142/S2737416521500046

Biovia, D. S., Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Richmond, T. J. (2000). Dassault Systèmes BIOVIA, Discovery Studio Visualizer. The Journal of Chemical Physics, 17(2).

Cantini, F., Niccoli, L., Matarrese, D., Nicastri, E., Stobbione, P., & Goletti, D. (2020). Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. Journal of Infection, January. https://doi.org/10.1016/j.jinf.2020.04.017

Carey, F. A. (2011). Química orgânica, Vol. 1 (7th ed.). Bookman Editora.

Csizmadia, P. (2019). MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. 1775. https://doi.org/10.3390/ecsoc-3-01775

Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. In Coronaviruses: Methods and Protocols (pp. 1–23). Humana Press. https://doi.org/10.1007/978-1-4939-2438-7_1

Fokoue, H. H., Pinheiro, P. S. M., Fraga, C. A. M., & Sant, C. M. R. (2020). Há algo de novo no reconhecimento molecular apliaco à química medicinal? Quim. Nova, 43(1), 78–89. https://doi.org/10.21577/0100-4042.20170474

Hegyi, A., & Ziebuhr, J. (2002). Conservation of substrate specificities among coronavirus main proteases. Journal of General Virology, 83(3), 595–599. https://doi.org/10.1099/0022-1317-83-3-595

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., You, T., Liu, X. X., Yang, X., Bai, F., Liu, H., … Yang, H. (2020). Structure-based drug design, virtual screening and high-throughput screening rapidly identify antiviral leads targeting COVID-19. BioRxiv, 2020.02.26.964882. https://doi.org/10.1101/2020.02.26.964882

Liu, X., Zhang, B., Jin, Z., Yang, H., & Rao, Z. (2020). The crystal structure of COVID-19 main protease in complex with an inhibitor N3. PDB Release, 119(February), 17–20. https://doi.org/10.2210/PDB6LU7/PDB

Mathew, D., & Hsu, W.-L. (2018). Antiviral potential of curcumin. Journal of Functional Foods, 40, 692–699. https://doi.org/10.1016/j.jff.2017.12.017

Mesel-Lemoine, M., Millet, J., Vidalain, P.-O., Law, H., Vabret, A., Lorin, V., Escriou, N., Albert, M. L., Nal, B., & Tangy, F. (2012). A Human Coronavirus Responsible for the Common Cold Massively Kills Dendritic Cells but Not Monocytes. Journal of Virology, 86(14), 7577–7587. https://doi.org/10.1128/jvi.00269-12

Moghadamtousi, S. Z., Kadir, H. A., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Research International, 1–13. https://doi.org/10.1155/2014/186864

Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I., & Matsushita, Y. (1992). Simple Method of Calculating Octanol/Water Partition Coefficient. CHEMICAL & PHARMACEUTICAL BULLETIN, 40(1), 127–130. https://doi.org/10.1248/cpb.40.127

Mouncea, B. C., Cesaroa, T., Carraua, L., Vallet, T., & Vignuzzia, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Research, 142, 148–157.

Nelson L., David; Cox M., M. (2014). Príncipios de Bioquímica de Lehninger (7th ed.). Artmed.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084

Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S. H. (2016). An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461

Ren, Z.-L., Hu, R., Wang, Z.-W., Zhang, M., Ruan, Y.-L., Wu, Z.-Y., Wu, H.-B., Hu, X.-P., Hu, Z.-P., Ren, W., Li, L.-C., Dai, F.-F., Liu, H., & Cai, X. (2020). Epidemiologic and clinical characteristics of heart transplant recipients during the 2019 coronavirus outbreak in Wuhan, China: A descriptive survey report. The Journal of Heart and Lung Transplantation, 39(5), 412–417. https://doi.org/10.1016/j.healun.2020.03.008

Rezaeetalab, F., Mozdourian, M., Amini, M., Javidarabshahi, Z., & Akbari, F. (2020). COVID-19: A New Virus as a Potential Rapidly Spreading in the Worldwide. Journal of Cardio-Thoracic Medicine, 8(1). https://doi.org/10.22038/jctm.2020.46924.1264

Rocha, M. N. da N. da, Alves, D. R. R., Marinho, M. M. M., Morais, S. M. D. M. De, & Marinho, E. S. S. (2021). Virtual screening of citrus flavonoid tangeretin: a promising pharmacological tool for the treatment and prevention of Zika fever and COVID-19. Journal of Computational Biophysics and Chemistry, S2737416521500137. https://doi.org/10.1142/S2737416521500137

Rosa, G., & Ferreira, E. (2020). Therapies used in rheumatology with relevance to coronavirus disease 2019. Clinical and Experimental Rheumatology, 38(2), 370.

Ulrich, H., & Pillat, M. M. (2020). CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-020-09976-7

Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A., Normolle, D. P., Djuric, Z., & Brenner, D. E. (2008). Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiology and Prevention Biomarkers, 17(6), 1411–1417. https://doi.org/10.1158/1055-9965

Webb, B., & Sali, A. (2019). Docking Screens for Drug Discovery. In Methods in Molecular Biology (Vol. 2053). Humana. https://doi.org/10.1007/978-1-4939-9752-7

World Health Organization - WHO. (2020). Coronavirus disease (COVID-19) Situation report - 104.

World Health Organization - WHO. (2021). Coronavirus disease (COVID-19) Pandemic.

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3

Zandi, K., Ramedani, E., Mohammadi, K., Tajbakhsh, S., Deilami, I., Rastian, Z., Fouladvand, M., Yousefi, F., & Farshadpour, F. (2010). Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Natural Product Communications, 5(12), 1935–1938. https://doi.org/10.1177/1934578x1000501220

Zhou, P., Yang, X.-L. Lou, Shi, Z.-L. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. Di, Liu, M. Q., Chen, Y., Shen, X. R., & Shi, Z.-L. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Descargas

Publicado

02/01/2022

Cómo citar

ALVES, D. R. .; ROCHA, M. N. da .; PASSOS, C. C. O. .; MARINHO, M. M. .; MARINHO, E. S. .; MORAIS, S. M. de . Curcuminas y sus derivados como potenciales inhibidores de la proteasa principal del Nuevo Coronavirus (COVID-19): una estrategia in silico. Research, Society and Development, [S. l.], v. 11, n. 1, p. e6511124334, 2022. DOI: 10.33448/rsd-v11i1.24334. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24334. Acesso em: 2 jul. 2024.

Número

Sección

Ciencias Exactas y de la Tierra