Sucesión degradante de insectos en pequeñas canales de roedores en sistemas subtropicales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.24558

Palabras clave:

Entomología forense; Descomposición de la canal; Familias de insectos; Mus musculus.

Resumen

Evaluamos la sucesión de insectos en pequeños cadáveres de roedores en el suelo (superficie vs. enterrados) en dos áreas (ribereña vs. agrícola) y dos períodos (primavera vs. verano). Diariamente, se pesaron los cadáveres y se recolectaron los insectos para el recuento e identificación a nivel del hogar. También medimos diariamente la temperatura del aire y del suelo, y las características físico-químicas del suelo. Se recolectaron 11.059 individuos de 28 taxones. Los taxones más abundantes fueron Calliphoridae (70%), Formicidae (20%), Muscidae (2%) y Sarcophagidae (2%). La riqueza de insectos fue mayor en primavera en áreas de vegetación ribereña, sin embargo, la descomposición y abundancia de insectos fue mayor en primavera en áreas agrícolas. Vespidae, Sarcophagidae, Muscidae y Calliphoridae disminuyeron con el tiempo, con picos de abundancia respectivamente a los 3, 7, 7 y 8 días en áreas de vegetación ribereña. Caliphoridae disminuyó en abundancia con el tiempo con un pico a los 5 días, pero Armadillidiidae aumentó, con un pico a los 6-9 días en áreas agrícolas. La descomposición y la abundancia de insectos fueron mayores en las áreas agrícolas, especialmente en la superficie del suelo. La riqueza de insectos fue mayor en las áreas de vegetación ribereña, especialmente en la superficie del suelo. Solo las capas superiores del suelo mostraron indicadores de taxones y todos disminuyeron con el tiempo con picos de abundancia de Calliphoridae, Sarcophagidae y Muscidae respectivamente en 5-8, 7 y 7 días. Las abundancias máximas de familias de insectos pueden servir como base de datos para la investigación y ayudar a determinar los intervalos post mortem en sistemas neotropicales subtropicales.

Citas

Al-Mekhlafi, F. A., Alajmi, R. A., Almusawi, Z., Mohammed Abd Al GAlil, F., Kaur, P., Al-Wadaan, M., & Al-Khalifa, M. S. (2020). A study of insect succession of forensic importance: Dipteran flies (diptera) in two different habitats of small rodents in Riyadh City, Saudi Arabia. Journal of King Saud University - Science, 32(7), 3111–3118. https://doi.org/10.1016/j.jksus.2020.08.022

Alvim, E. A. C. C., Medeiros, A.O., Rezende, R. S., & Gonçalves, J. F. Jr. (2020). Small leaf breakdown in a Savannah headwater stream. Limnologica, 51(1), 131-138. https://doi.org/10.1016/j.limno.2014.10.005

Andrade-Herrera, K. N., Mello-Patiu, C. A., Núñez-Vázquez, C., & Estrella, E. (2020). Flesh Flies (Diptera: Sarcophagidae) Attracted to a Snake Carcass (Boa constrictor) in Yucatan Peninsula, Mexico. Journal of Medical Entomology, 57(6), 2011–2015. https://doi.org/10.1093/jme/tjaa115

Baker, M. E., & King, R. S. (2010). A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods in Ecology and Evolution, 1(1), 25–37. https://doi.org/10.1111/j.2041-210X.2009.00007.x

Baker, M. E., & King, R. S. (2013). Of TITAN and straw men: An appeal for greater understanding of community data. Freshwater Science, 32(2), 489–506. https://doi.org/10.1899/12-142.1

Bornemissza, G. (1957). An analysis of Arthropod succession in Carrion and the effect of its decomposiion on the soil fauna. Australian Journal of Zoology, 5(1), 1–12.

Byrd, J. H., & Castner, J. L. (2001). Insect of forensic importance. Forensic entomology: The utility of arthropods in legal investigations. CRC Press,

Carvalho, C. J. B. de, & Mello-Patiu, C. A. de. (2008). Key to the adults of the most common forensic species of Diptera in South America. Revista Brasileira de Entomologia, 52(3), 390–406. https://doi.org/10.1590/S0085-56262008000300012

Crawley, M. J. (2007). The R Book. John Wiley & Sons Ltd.

Cruise, A., Watson, D. W., & Schal, C. (2018). Ecological succession of adult necrophilous insects on neonate Sus scrofa domesticus in central North Carolina. PLOS ONE, 13(4), e0195785. https://doi.org/10.1371/journal.pone.0195785

Cruz, T. M., & Vasconcelos, S. D. (2006). Entomofauna de solo associada à decomposição de suíno em um fragmento de Mata Atlântica de Pernambuco, Brasil. 14(2), 10.

De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5), 744–749. https://doi.org/10.1038/s41559-019-0842-1

Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

Feng, A. Y. T., & Himsworth, C. G. (2014). The secret life of the city rat: A review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosystems, 17(1), 149–162. https://doi.org/10.1007/s11252-013-0305-4

Haskell, N. H., Williams, R. E., Catts, D., Adkins, J., & Haskell, C. (2008). Entomology and death: A procedural guide. East Park Printing.

Herdina, A., Bitencourt, G., Mare, R. D., & Barbosa, B. C. (2016). Polybia (Myrapetra) scutellaris (Hymenoptera: Vespidae) foraging on flies at carcasses of Rattus norvegicus (Rodentia: Muridae). Sociobiology, 63(1), 728–730. https://doi.org/10.13102/sociobiology.v63i1.937

Higley, L. G., & Huntington, T. E. (2009). Forensic Entomology: An Introduction. Journal of Medical Entomology, 46(5), 1244–1244. https://doi.org/10.1603/033.046.0538

Ito, M. (2021). Frequency of carcass burial in animal burrows for reproduction by Nicrophorus concolor (Coleoptera: Silphidae). Journal of Ethology, 39(1), 141–144. https://doi.org/10.1007/s10164-020-00678-8

Jales, J. T., Barbosa, T. de M., dos Santos, L. C., Rachetti, V. de P. S., & Gama, R. A. (2020). Carrion decomposition and assemblage of necrophagous dipterans associated with Terbufos (Organophosphate) intoxicated rat carcasses. Acta Tropica, 212, 105652. https://doi.org/10.1016/j.actatropica.2020.105652

King, R. S., Baker, M. E., Kazyak, P. F., & Weller, D. E. (2011). How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecological Applications, 21(5), 1659–1678. https://doi.org/10.1890/10-1357.1

King, R. S., & Richardson, C. J. (2003). Integrating Bioassessment and Ecological Risk Assessment: An Approach to Developing Numerical Water-Quality Criteria. Environmental Management, 31(6), 795–809. https://doi.org/10.1007/s00267-002-0036-4

Kotzé, Z., Villet, M. H., & Weldon, C. W. (2016). Heat accumulation and development rate of massed maggots of the sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). Journal of Insect Physiology, 95, 98–104. https://doi.org/10.1016/j.jinsphys.2016.09.009

Kutcherov, D., Lopatina, E. B., & Yermakov, S. (2019). Effects of Temperature and Photoperiod on the Immature Development in Cassida rubiginosa Müll. and C. stigmatica Sffr. (Coleoptera: Chrysomelidae). Scientific Reports, 9(1), 10047. https://doi.org/10.1038/s41598-019-46421-3

Maestri, R., Galiano, D., Kubiak, B. B., & Marinho, J. R. (2014). Diversity of small land mammals in a subtropical Atlantic forest in the western region of the state of Santa Catarina, southern Brazil. Biota Neotropica, 14(4). https://doi.org/10.1590/1676-06032014012914

Maestri, R., Galiano, D., Kubiak, B. B., & Marinho, J. R. (2014). Diversity of small land mammals in a subtropical Atlantic forest in the western region of the state of Santa Catarina, southern Brazil. Biota Neotropica, 14(4). https://doi.org/10.1590/1676-06032014012914

Medeiros, A. O., Callisto, M., Graça, M. A. S., Ferreira, V., Rosa, C. A., França, J., Eller, A., Rezende, R. S., & Gonçalves, J. F. Jr., (2015). Microbial colonization and litter decomposition in a Cerrado stream is limited by low dissolved nutrient concentration. Limnetica, 34(2), 283-292. https://doi.org/ 10.23818/limn.34.22

Moretti, T. de C., & Ribeiro, O. B. (2006). Cephalotes clypeatus Fabricius (Hymenoptera: Formicidae): hábitos de nidificação e ocorrência em carcaça animal. Neotropical Entomology, 35(3), 412–415. https://doi.org/10.1590/S1519-566X2006000300019

Moskowitz, B. M., Jackson, M., & Chandler, V. (2015). Geophysical Properties of the Near-Surface Earth: Magnetic Properties. In G. Schubert (Ed.), Treatise on Geophysics (Second Edition) (pp. 139–174). Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00191-3

Na, M., & Pt, J. (2013). Forensic Entomology in Malaysia: A Review. Malaysian Journal of Forensic Sciences, 4(1), 7.

Navarro, F. K. S. P., Rezende, R. S., & Gonçalves, J. F. Jr., (2013). Experimental assessment of temperature increase and presence of predator carcass changing the response of invertebrate shredders. Biota Neotropica, 13(4), 28–33. https://doi.org/10.1590/S1676-06032013000400002

Oliveira-Costa, J. (2013). Insetos “Peritos” – A Entomologia Forense no Brasil. Millennium.

Ota, Y., Masuda, T., Araki, K., & Yamaguchi, M. (2019). A mobile multipyranometer array for the assessment of solar irradiance incident on a photovoltaic-powered vehicle. Solar Energy, 184, 84–90. https://doi.org/10.1016/j.solener.2019.03.084

Parry, N. J., Mansell, M. W., & Weldon, C. W. (2016). Seasonal, Locality, and Habitat Variation in Assemblages of Carrion-Associated Diptera in Gauteng Province, South Africa. Journal of Medical Entomology, 53(6), 1322–1329. https://doi.org/10.1093/jme/tjw104

Probst, C., Gethmann, J., Amendt, J., Lutz, L., Teifke, J. P., & Conraths, F. J. (2020). Estimating the Postmortem Interval of Wild Boar Carcasses. Veterinary Sciences, 7(1), 6. https://doi.org/10.3390/vetsci7010006

Pujol-Luz, J. R., Marques, H., Ururahy-Rodrigues, A., Rafael, J. A., Santana, F. H. A., Arantes, L. C., & Constantino, R. (2006). A Forensic Entomology Case from the Amazon Rain Forest of Brazil. Journal of Forensic Sciences, 51(5), 1151–1153. https://doi.org/10.1111/j.1556-4029.2006.00217.x

Quintão, J. M. B., Rezende, R. S. & Gonçalves, J. F. Jr., (2013). Microbial effects in leaf breakdown in tropical reservoirs of different trophic status. Freshwater Science 32(1), 933-950. https://doi.org/10.1899/12-112.1

Rabinowitz, A., & Nottingham, B. G. J. (1989). Mammal species richness and relative abundance of small mammals in a subtropical wet forest of Central America. 53(2), 217–226. https://doi.org/10.1515/mamm.1989.53.2.217

Rezende, R. S., Medeiros, A. O., Gonçalves, J. F., Feio, M. J., Pereira Gusmão, E., de Andrade Gomes, V. Â., Calor, A., & Almeida, J. dos S. D. (2019). Patterns of litter inputs, hyphomycetes and invertebrates in a Brazilian savanna stream: A process of degradative succession. Journal of Tropical Ecology, 35(6), 297–307. https://doi.org/10.1017/S0266467419000269

Rezende, R. S., Bernardi, J. P., Gomes, E. S., Martins, R. T., Hamada, N., & Gonçalves, J. F. (2021). Effects of Phylloicus case removal on consumption of leaf litter from two Neotropical biomes (Amazon rainforest and Cerrado savanna). Limnology, 22(1), 35–42. https://doi.org/10.1007/s10201-020-00628-w

Rezende, R. S., Santos, A. M., Medeiros, A. O., & Gonçalves Jr., J. F. (2017). Temporal leaf litter breakdown in a tropical riparian forest with an open canopy. Limnetica, 36, 445–459. https://doi.org/10.23818/limn.36.14

Richards, C. S., Williams, K. A., & Villet, M. H. (2009). Predicting Geographic Distribution of Seven Forensically Significant Blowfly Species (Diptera: Calliphoridae) in South Africa. African Entomology, 17(2), 170–182. https://doi.org/10.4001/003.017.0207

Rodríguez, J. N., & Liria, J. (2017). Seasonal abundance in necrophagous Diptera and Coleoptera from northern Venezuela. Tropical Biomedicine, 34(2), 315–323.

Sfenthourakis, S., & Hornung, E. (2018). Isopod distribution and climate change. ZooKeys, 801, 25–61. https://doi.org/10.3897/zookeys.801.23533

Souza, A. M., & Linhares, A. X. (1997). Diptera and Coleoptera of potential forensic importance in southeastern Brazil: Relative abundance and seasonality. Medical and Veterinary Entomology, 1(11), 8–12. https://doi.org/10.1111/j.1365-2915.1997.tb00284.x

Tedesco, M. J., Gianello, C., Bissani, C. A., Bohmen, H., & Volkweiss, S. J. (1995). Analises de solo, plantas e outros materiais (2nd ed.). Porto Alegre : Departamento de solos da UFRGS.

Tembe, D., & Mukaratirwa, S. (2021). Insect Succession and Decomposition Pattern on Pig Carrion During Warm and Cold Seasons in Kwazulu-Natal Province of South Africa. Journal of Medical Entomology, tjab099. https://doi.org/10.1093/jme/tjab099

Terborgh, J., Losos, E., Riley, M. P., & Riley, M. B. (1993). Predation by vertebrates and invertebrates on the seeds of five canopy tree species of an Amazonian forest. In T. H. Fleming & A. Estrada (Eds.), Frugivory and seed dispersal: Ecological and evolutionary aspects (pp. 375–386). Springer Netherlands. https://doi.org/10.1007/978-94-011-1749-4_26

Trivia, A. L., & de Carvalho Pinto, C. J. (2018). Analysis of the Effect of Cyclophosphamide and Methotrexate on Chrysomya megacephala (Diptera: Calliphoridae),. Journal of Forensic Sciences, 63(5), 1413–1418. https://doi.org/10.1111/1556-4029.13740

von Hoermann, C., Lackner, T., Sommer, D., Heurich, M., Benbow, M. E., & Müller, J. (2021). Carcasses at Fixed Locations Host a Higher Diversity of Necrophilous Beetles. Insects, 12(5), 412. https://doi.org/10.3390/insects12050412

Wang, Y., Wang, Y., Wang, M., Xu, W., Zhang, Y., & Wang, J. (2021). Forensic Entomology in China and Its Challenges. Insects, 12(3), 230. https://doi.org/10.3390/insects12030230

Wolff, M., Uribe, A., Ortiz, A., & Duque, P. (2001). A preliminary study of forensic entomology in Medellı́n, Colombia. Forensic Entomology, 120(1), 53–59. https://doi.org/10.1016/S0379-0738(01)00422-4

Zeariya, M., & Kabadaia, M. (2019). The Abundance of Forensic Insects on Dog and Rabbit Carcasses in Different Habitats and Developmental Stages of Chrysomya albiceps as a Forensic Indicator. Egyptian Academic Journal of Biological Sciences, E. Medical Entomology & Parasitology, 11(1), 41–49. https://doi.org/10.21608/eajbse.2019.38885

Descargas

Publicado

02/01/2022

Cómo citar

SILVA, B. da .; SANTOLIN, S.; REZENDE, R. de S. . Sucesión degradante de insectos en pequeñas canales de roedores en sistemas subtropicales. Research, Society and Development, [S. l.], v. 11, n. 1, p. e7511124558, 2022. DOI: 10.33448/rsd-v11i1.24558. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24558. Acesso em: 25 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas