Influencia de la concentración y el tiempo de acondicionamiento en la fuerza de anillado de las cerámicas de litio disilicado

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i17.24776

Palabras clave:

Cerámica ; Ácido fluorhídrico ; Cementación; Microcizalla.

Resumen

Evaluar el efecto de diferentes concentraciones de HF y tiempos de grabado sobre la fuerza de unión al micro-cizallamiento (μSBS) del DL al cemento de resina. Se distribuyeron aleatoriamente cuarenta secciones DL (8x8 mm) de 3 mm de espesor (n = 10) de acuerdo con la concentración de HF (5 o 10%) y el tiempo de acondicionamiento de la superficie (20 e 60 segundos). Las muestras se silanizaron y recibieron una fina capa de adhesivo fotopolimerizable. Se colocaron seis tubos translúcidos (0,8 mm de diámetro y 1 mm de altura) sobre cada sección de DL, se rellenaron con cemento de resina y se fotopolimerizaron. Después de 24 horas de almacenamiento, los tubos se retiraron con cuidado y las muestras se sometieron a la prueba μSBS. Los resultados se sometieron a análisis de varianza bidireccional y prueba post hoc de Sidak (α = 0,05). Se observaron muestras representativas acondicionadas con HF y una muestra DL no acondicionada bajo un microscopio electrónico de barrido. La interacción entre las concentraciones de HF y los tiempos de acondicionamiento no fue significativa (p = 0.075). No se observaron diferencias significativas con respecto a las concentraciones de HF y los tiempos de acondicionamiento (p = 0.06; p = 0.059). En superficies tratadas con HF al 10% durante 60 segundos, se encontraron surcos y microfisuras. μSBS de DL para cemento resinoso no fue influenciado significativamente por diferentes concentraciones de HF y tiempos de acondicionamiento; sin embargo, la morfología de la superficie DL se ha modificado considerablemente.

Biografía del autor/a

Roberta Pinto Pereira, Federal University of Santa Catarina

Cirurgião-Dentista | Faculdades Integradas Espírito-Santense

Mestre em Dentística | Universidade Federal de Santa Catarina

Renan Dias Carvalho, Federal University of Santa Catarina

DDS, Federal University of Santa Catarina, Florianópolis, SC, Brazil.

Carolina Mayumi Cavalcanti Taguchi, Federal University of Santa Catarina

DDS, MSD, PhD, Federal University of Santa Catarina, Florianópolis, SC, Brazil.

Sylvio Monteiro Jr, Federal University of Santa Catarina

DDS, MSD, PhD, Federal University of Santa Catarina, Florianópolis, SC, Brazil.

Renata Gondo, Federal University of Santa Catarina

DDS, MSD, PhD, Federal University of Santa Catarina, Florianópolis, SC, Brazil.

Citas

Aboushelib, M. N., & Sleem, D. (2014). Microtensile bond strength of lithium disilicate ceramics to resin adhesives. J Adhes Dent, 16(6), 547-552.

Alghazzawi, T. F., Lemons, J., Liu, P. R., Essig, M. E., & Janowski, G. M. (2012). The failure load of CAD/CAM generated zirconia and glass-ceramic laminate veneers with different preparation designs. J Prosthet Dent, 108(6), 386-393.

Bajraktarova-Valjakova, E., Grozdanov, A., Guguvcevski, L., Korunoska-Stevkovska, V., Kapusevska, B., Gigovski, N., Mijoska, A., & Bajraktarova-Misevska, C. (2018). Acid etching as surface treatment method for luting of glass-ceramic restorations, part 1: Acids, application protocol and etching effectiveness. Open Access Maced J Med Sci, 6(3), 568-573.

Blatz, M. B., Sadan, A., & Kern, M. (2003). Resin-ceramic bonding: A review of the literature. J Prosthet Dent, 89(3), 268-274.

Borges, G. A., Sophr, A. M., de Goes, M. F., Sobrinho, C. L., & Chan, D. C. N. (2003). Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosthet Dent, 89(5): 479-488.

Bottino, M. A., Snellaert, A., Bergoli, C. D, Özcan, M., Bottino, M. C., & Valandro, L. F. (2015). Effect of ceramic etching protocols on resin bond strength to a feldspar ceramic. Oper Dent, 40(2), 40-46.

Brentel, A. S., Özcan, M., Valandro, L. F., Alarça, L. G., Amaral, R., & Bottino, M. A. (2007). Microtensile bond strength of a resin cement to feldspathic ceramic after different etching and silanization regimens in dry and aged conditions. Dent Mater, 23(11), 1323-1331.

Denry, I., & Kelly, J. R. (2014). Emerging ceramic-based materials for dentistry. J Dent Res, 93(12), 1235-1242.

Edelhoff, D., Prandtner, O., Saeidi Pour, R., Liebermann, A., Stimmelmayr, M., & Güth, J. F. (2018). Anterior restorations: The performance of ceramic veneers. Quintessence Int, 49(2), 89-101.

Gracis, S., Thompson, V. P., Ferencz, J. L., Silva, N.R., & Bonfante, E. A. (2015). A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont, 28(3), 227-235.

Guarda, G. B., Correr, A. B., Gonçalves, L. S., Costa, A. R., Borges, G. A., Sinhoreti, M. A., & Sobrinho, C. L. (2013). Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic. Oper Dent, 38(2), 208-217.

Haddad, M. F., Rocha, E. P., & Assunção, W. G. (2011). Cementation of prosthetic restorations: From conventional cementation to dental bonding concept. J Craniofac Surg, 22(3), 952-958.

Hooshmand, T., Parvizi, S., & Keshvad, A. (2008). Effect of surface acid etching on the biaxial flexural strength of two hot pressed glass ceramics. J Prosthodont, 17(5), 415-419.

Kalavacharla, V. K., Lawson, N. C., Ramp, L. C., & Burgess, J. O. (2015). Influence of etching protocol and silane treatment with a universal adhesive on lithium disilicate bond strength. Oper Dent, 40(4), 372-378.

Lise, D. P., Perdigão, J., Van Ende, A., Zidan, O., & Lopes, G. C. (2015). Microshear bond strength of resin cements to lithium disilicate substrates as a function of surface preparation. Oper Dent, 40(5), 524-532.

Lopes, G. C., Perdigão, J., Baptista, D., & Ballarin, A. (2019). Does a self-etching ceramic primer improve bonding to lithium disilicate ceramics? Bond strengths and FESEM analyses. Oper Dent, 44(2), 210-218.

Mokhtarpour, F., Alaghehmand, H., & Khafri, S. (2017). Effect of hydrofluoric acid surface treatment on microshear bond strength of CAD/CAM ceramics. Electron Physician, 9(10), 5487-5493.

Mörmann, W. H., Stawarczyk, B., Ender, A., Sener, B., Attin, T., & Mehl A. (2013). Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and martens hardness. J Mech Behav Biomed Mater, 20(1), 113-125.

Ozcan, M., Allahbeickaraghi, A., & Dündar, M. (2012). Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: A review. Clin Oral Investig, 16(1), 15-23.

Panah, F. G., Rezai, S. M. S., & Ahmadian, L. (2008). The influence of ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2. J Prosthodont,17(5), 409-414.

Pattanaik, S., & Wadkar, A. P. (2011). Effect of etchant variability on shear bond strength of all ceramic restorations –An in vitro study. J Indian Prosthodont Soc, 11(1), 55-62.

Peumans, M., Valjakova, E. B., De Munck, J., Mishevska, C. B., & Van Meerbeek, B. (2016). Bonding effectiveness of luting composites to different CAD/CAM materials. J Adhes Dent, 18(4), 289-302.

Posritong, S., Borges, A. L., Chua, T. M., Eckert, G. J., Bottino, M. A., & Bottino, M. C. (2013). The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic. Dent Mater, 29(11), 281- 290.

Prochnow, C., Venturini, A. B., Grasel, R., Bottino, M. C., & Valandro, L. F. (2017). Effect of etching with distinct hydrofluoric acid concentrations on the flexural strength of a lithium disilicate-based glass ceramic. Biomater J Biomed Mater Res B Appl, 105(4), 885-891.

Puppin-Rontani, J., Sundfeld, D., Costa, A. R., Correr, A. B., Puppin-Rontani, R. M., Borges, G. A., Sinhoreti, M., & Correr-Sobrinho, L. (2017). Effect of hydrofluoric acid concentration and etching time on bond strength to lithium disilicate glass ceramic. Oper Dent, 42(6), 606-615.

Ramakrishnaiah, R., Alkheraif, A. A., Divakar, D. D., Matinlinna, J. P., & Vallittu, P. K. (2016). The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int J Mol Sci, 17(6), 822.

Santos, M. J. M. C., Costa, M. D., Rubo, J. H., Pegoraro, L.F., & Santos, Jr. G. C. (2015). Current all-ceramic systems in dentistry: a review. Compend Contin Educ Dent, 36(1), 38-40.

Shimada, Y., Yamaguchi, S., & Tagami, J. (2002). Micro-shear bond strength of dual-cured resin cement to glass ceramics. Dent Mat, 18(5), 380-388.

Sundfeld, D., Correr-Sobrinho, L., Pini, N. I., Costa, A. R., Sundfeld, R. H., Pfeifer, C. S., Martins, L. R. (2016). The effect of hydrofluoric acid concentration and heat on the bonding to lithium disilicate glass ceramic. Braz Dent J, 27(6), 727-733.

Sundfeld, D., Palialol, A. R. M., Fugolin, A. P. P., Ambrosano, G. M. B., Sobrinho, C. L., Martins, L. R. M., Pfeifer, C. S. (2018). The effect of hydrofluoric acid and resin cement formulation on the bond strength to lithium disilicate ceramic. Braz Oral Res, 32: e43.

Sundfeld Neto, D., Naves, L. Z., Costa, A. R., Correr, A. B., Consani, S., Borges, G. A., & Sobrinho, C. L. (2015). The effect of hydrofluoric acid concentration on the bond strength and morphology of the surface and interface of glass ceramics to a resin cement. Oper Dent, 40(5), 470-479.

Trakyali, G., Malkondu, Ö., Kazazoglu, E., & Arun, T. (2009). Effects of different silanes and acid concentrations on bond strength of brackets to porcelain surfaces. Eur J Orthod, 31(4), 402-406.

Venturini, A. B., Prochnow, C., Rambo, D., Gundel, A., & Valandro, L. F. (2015). Effect of hydrofluoridric acid concentration on resin adhesion to a feldspathic ceramic. J Adhes Dent, 17(4), 313-320.

Zogheib, L. V., Della Bona, A., Kimpara, E. T., & Mccabe, J. F. (2011). Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic. Braz Dent J, 22(1), 45-50.

Descargas

Publicado

26/12/2021

Cómo citar

PEREIRA, R. P. .; CARVALHO, R. D. .; TAGUCHI, C. M. C. .; MONTEIRO JR, S.; GONDO, R. Influencia de la concentración y el tiempo de acondicionamiento en la fuerza de anillado de las cerámicas de litio disilicado . Research, Society and Development, [S. l.], v. 10, n. 17, p. e215101724776, 2021. DOI: 10.33448/rsd-v10i17.24776. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24776. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud