Implicaciones y beneficios de la Rehabilitación Inteligente en disfunciones neurológicas: una revisión narrativa
DOI:
https://doi.org/10.33448/rsd-v11i1.24856Palabras clave:
Dispositivos de autoayuda; Fisioterapia; Enfermidade del sistema nervioso.Resumen
Objetivo: La fisioterapia neurofuncional, en todo el mundo, avanza con el propósito de proporcionar nuevas herramientas que auxilien el proceso de rehabilitación de pacientes con disfunciones e incapacidades neuromusculoesqueléticas. Actualmente, el proceso de recuperación se potencia con la implantación de dispositivos robóticos, electrónicos y portátiles (DREV). Esta revisión bibliográfica aborda los dispositivos inteligentes y discute el uso de los mismos en la población, categorizándolos y explotando su aplicabilidad en la fisioterapia de los DREV. Métodos: Se recopilaron artículos en lengua inglesa y portuguesa de la base de datos Pubmed, Scielo, Bireme, ResearchGate y otras fuentes publicadas en los últimos 10 años y posteriormente se compararon y se analizaron para determinar su relevancia para finalmente incluirlos en el artículo después de una rigurosa revisión. Resultados: Se analizó un total de 53 artículos sobre dispositivos inteligentes cualitativamente y también se sintetizaron las informaciones. Esta revisión bibliográfica muestra que los DREV han ganado más espacio en el proceso de rehabilitación fisioterapéutica y que pueden utilizarse en diferentes segmentos del cuerpo humano ya que transforman la calidad de vida de los usuarios. Conclusión: A pesar de las limitaciones y de la disponibilidad de esta tecnología para la población más pobre, se cree que los dispositivos son opciones promisoras en el campo da salud. La implantación en el espectro clínico hospitalar y accesibilidad de los DREV necesitan una discusión interdisciplinar entre las diversas categorías de la salud para tener una oferta mejor de cuidados a las personas con condiciones neuromusculoesqueléticas.
Citas
Albuquerque, V. S., Fernandes, L. P., & Mármora, C. H. C. (2019). O uso de dispositivos auxiliares para marcha em idosos e sua relação com autoeficácia para quedas. Revista Hospital Universitário Pedro Ernesto, 17(2), 51–56. https://doi.org/10.12957/rhupe.2018.40858.
Almeida, O. P., Yeap, B. B., Alfonso, H., Hankey, G. J., Flicker, L., & Norman, P. E. (2012). Older Men Who Use Computers Have Lower Risk of Dementia. PLoS ONE, 7(8), 1–6. https://doi.org/10.1371/journal.pone.0044239.
Argañarás, J. G., Wong, Y. T., Begg, R., & Karmakar, N. C. (2021). State-of-the-art wearable sensors and possibilities for radar in fall prevention. Sensors, 21(20), 1–23. https://doi.org/10.3390/s21206836.
Atashzar, S. F., Carriere, J., & Tavakoli, M. (2021). Review : How Can Intelligent Robots and Smart Mechatronic Modules Facilitate Remote Assessment , Assistance , and Rehabilitation for Isolated Adults With Neuro-Musculoskeletal Conditions ?. Frontiers and Robotics and AI, 8, 1–19. https://doi.org/10.3389/frobt.2021.610529.
Azevedo, G. T., & Maltempi, M. V. (2021). Invenções robóticas para o Tratamento de Parkinson: pensamento computacional e formação matemática. Bolema: Boletim de Educação Matemática, 35(69), 63–88. https://doi.org/10.1590/1980-4415V35N69A04.
Bao, T., Carender, W. J., Kinnaird, C., Barone, V. J., Peethambaran, G., Whitney, S. L., Kabeto, M., Seidler, R. D., & Sienko, K. H. (2018). Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: A randomized preliminary study. Journal of NeuroEngineering and Rehabilitation, 15(1), 1–13. https://doi.org/10.1186/s12984-017-0339-6.
Brasil (2009). Tecnologia Assistiva. Brasília
Barreto, G. F. M., Aversari, L. O. C., Barreto, R. G. (2019). Gerência de Projetos em Computação Vestível: Diretrizes para o Desenvolvimento de Produtos Vestíveis Inteligentes, 388–416. Atena editora.
Bayón, C., Lerma, S., Ramírez, O., Serrano, J. I., Del Castillo, M. D., Raya, R., Martínez, I., & Rocon, E. (2016). Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population : short report. Journal of NeuroEngineering and Rehabilitation, https://doi.org/10.1186/s12984-016-0206-x.
Bayón, C., Ramirez, O., Del Castillo, M. D., Serrano, J. I., Raya, R., Belda-Lois, J. M., Poveda, R., Mollà, F., Martín, T., Martínez, I., Lara, S. L., & Rocon, E. (2016). CPWalker: Robotic Platform for Gait Rehabilitation in Patients with Cerebral Palsy. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), 3736–3741.
Bisio, I., Garibotto, C., Lavagetto, F., & Sciarrone, A. (2019). When eHealth Meets IoT : A Smart Wireless System for Post-Stroke Home Rehabilitation. IEEE Wireless Communications, 26(6), 24–29.
Carnevale, A., Longo, U. G., Schena, E., Massaroni, C., Lo Presti, D., Berton, A., Candela, V., & Denaro, V. (2019). Wearable systems for shoulder kinematics assessment: A systematic review. BMC Musculoskeletal Disorders, 20(1), 1–24. https://doi.org/10.1186/S12891-019-2930-4/FIGURES/3
Caro, C. C., Costa, J. D., & Cezar da Cruz, D. M. (2018). O uso de dispositivos auxiliares para a mobilidade e a independência funcional em sujeitos com Acidente Vascular Cerebral. Cadernos Brasileiros de Terapia Ocupacional, 26(3), 558–568. https://doi.org/10.4322/2526-8910.CTOAO1117
Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health / Types of literature review: considerations of the editors of the Journal of Nursing and Health. Journal of Nursing and Health, 10(5), 1–7. https://doi.org/10.15210/jonah.v10i5.19924
Cogollor, J. M., Rojo-lacal, J., Hermsdörfer, J., Ferre, M., Waldmeyer, M. T. A., Giachritsis, C., Armstrong, A., Martinez, J. M. B., Loza, D. A. B, & Sebastián, J. M. (2018). Evolution of Cognitive Rehabilitation After Stroke From Traditional Techniques to Smart and Personalized Home-Based Information and Communication Technology Systems : Literature Review. JMIR rehabilitation and assistive technologies, 5(1). https://doi.org/10.2196/rehab.8548.
Coimbra, T. M., Ezequiel, C. T., Moreira, D. S., Morita, M. P. A., Castiglioni, L., & Bianchin, M. A. (2018). Comunicação Alternativa Ampliada na Esclerose Lateral Amiotrófica: a tecnologia a favor da reabilitação. Arquivos de Ciências da Saúde – Faculdade de Medicina de São José do Rio Preto – FAMERP, 25(3), 22. http://dx.doi.org/10.17696/2318-3691.25.3.2018.1054.
Damiano, D. L., Prosser, L. A., Curatalo, L. A., & Alter, K. E. (2013). Muscle Plasticity and Ankle Control After Repetitive Use of a Functional Electrical Stímulation Device for Foot Drop in Cerebral Palsy. Neurorehabilitation Neural Repair, 27(3), 200-207. https://doi.org/10.1177/1545968312461716.
Davies, R. J., Parker, J., Mccullagh, P., & Zheng, H. (2016). A Personalized Self-Management Rehabilitation System for Stroke Survivors : A Quantitative Gait Analysis Using a Smart Insole. JMIR Rehabil Assist Technol, 3(2), 1–13. https://doi.org/10.2196/rehab.5449.
Elsner, V. R., Trevizol, L., De Leon, I., Silva, M., Weiss, T., Braga, M., Pochmann, D., Blembeel, A. S., Dani, C., & Boggio, E. (2021). Therapeutic effectiveness of a single exercise session combined with WalkAide functional electrical stimulation in post-stroke patients : a crossover design study. Neural Regen Res. 16(5), 805–812.
Emmerson, K. B., Harding, K. E., Lockwood, K. J., & Taylor, N. F. (2018). Home exercise programs supported by video and automated reminders for patients with stroke: A qualitative analysis. Australian Occupational Therapy Journal, 65(3), 187–197. https://doi.org/10.1111/1440-1630.12461.
Finch, T. R., Finch, P. D., & Cook, D. R. (2016). Assistive apparatus for hand held vessels or items. U.S. Patent, 237(9), 796.
Ginis, P., Nackaerts, E., Nieuwboer, A., & Heremans, E. (2018). ScienceDirect Cueing for people with Parkinson’s disease with freezing of gait : A narrative review of the state-of-the-art and novel perspectives. Annals of Physical and Rehabilitation Medicine.61, 407–413.
Ireno, J. M., Chen, N., Zafani, M. D., & Baleotti, L.R. (2019). O uso de órteses em crianças com paralisia cerebral. Cardenos Brasileiros de Terapia Ocupacional, 27(1), 35-44. https://doi.org/10.4322/2526-8910.ctoAO1612.
Kettlewell, J., das Nair, R., & Radford, K. (2019). A systematic review of personal smart technologies used to improve outcomes in adults with acquired brain injuries. Clinical Rehabilitation, 33(11), 1705-1712. https://doi.org/10.1177/0269215519865774.
Ko, B. W., Lee, H. Y., & Song, W. K. (2016). Rhythmic auditory stimulation using a portable smart device: Short-term effects on gait in chronic hemiplegic stroke patients. Journal of Physical Therapy Science, 28(5), 1538-1543. https://doi.org/10.1589/jpts.28.1538
Korzeniewska, E., Krawczyk, A., Mróz, J., Wyszyńska, E., & Zawiślak, R. (2020). Applications of smart textiles in post-stroke rehabilitation. Sensors (Switzerland), 20(8), 1–12. https://doi.org/10.3390/s20082370
Lee, H. Y., Ko, B. H., Song, W. K., Kim, H., & Shin, J. H. ( 2015). Rhythmic Auditory Stimulation for Robot-Assisted Gait Rehabilitation: a preliminar study. IEEE International Conference on Advanced Intelligent Mechatronics (AIM). https://doi.org/10.1109/AIM.2015.7222569.
Llorente, J. O. (2019). The potential of error-related potentials. Analysis and decoding for control, neuro-rehabilitation and motor substitution. Fundácion Dialnet. Available in: https://dialnet.unirioja.es/servlet/tesis?codigo=257829. Access in: 19 november 2021.
Lobo, M. A., Hall, M. L., Greenspan, B., Rohloff, P., Prosser, L. A., & Smith, B. A. (2019). Wearables for Pediatric Rehabilitation: How to Optimally Design and Use Products to Meet the Needs of Users. Physical Therapy, 99(6), 647–657. https://doi.org/10.1093/PTJ/PZZ024.
Lu, L., Zhang, J., Xie, Y., Gao, F., Xu, S., Wu, X., & Ye, Z. (2020). Wearable health devices in health care: Narrative systematic review. JMIR MHealth and UHealth, 8(11). https://doi.org/10.2196/18907.
Mendes, G. C., Barros, F. S., & Nohama, P. (2018). Tecnologia assistiva lúdica para ganho de funcionalidade. Revista da Universidade Vale do Rio Verde, 16(2), 1-10. http://dx.doi.org/10.5892/ruvrd.v16i2.4975.g10951282.
Mohammadi-Abdar, H., Ridgel, A. L., Discenzo, F. M., & Loparo, K. A. (2016). Design and Development of a Smart Exercise Bike for Motor Rehabilitation in Individuals with Parkinson’s Disease. IEEE/ASME Transactions on Mechatronics : A Joint Publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, 21(3), 1650–1658. https://doi.org/10.1109/TMECH.2015.2508030
Monge, J., & Postolache, O. (2018). Augmented reality and smart sensors for physical rehabilitation. In: 2018 International Conference and Exposition on Electrical And Power Engineering (EPE). International Conference and Exposition on Electrical and Power Engineering (EPE), 1010-1014. https://doi.org/10.1109/ICEPE.2018.8559935.
Morgado, F. L., & Rossil, L. A. (2011). Correlação entre a escala de coma de Glasgow e os achados de imagem de tomografia computadorizada em pacientes vítimas de traumatismo crânio encefálico. Radiologia Brasileira, 44(1), 35-41. https://doi.org/10.1590/S0100-39842011000100010.
Nam, K. Y., Kim, H. J., Kwon, B. S., Park, J., Lee, H. J., & Yoo, A. (2017). Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. Journal of NeuroEngineering and Rehabilitation, 14(1), 24. https://doi.org/10.1186/s12984-017-0232-3.
Neto, L. L., Júnior, M. C. F., & Chun, R. Y. S. (2021). Amyotrophic lateral sclerosis, dysarthria, and language disorders – type of reserach and approaches in diferente areas: an integrative literature review. Revista CEFAC, 23(1), 01-13. http://dx.doi.org/10.1590/1982-0216/20212318220.
Neto, H. P., Grecco, Christovão, T. C. L., L. A. C., Braun, L. A., Giannasi, L. C., Salgado, A. S. I., Moura, R. C. F., Carvalho, P. T. C., Corrêa, J. C. F., Sampaio, L. M. M., Galli, M. & Oliveira, C. S. (2012). Effect of posture-control insoles on function in children with cerebral palsy: Randomized controlled clinical trial. BMC Musculoskelet Disord, 13(193). https://doi.org/10.1186/1471-2474-13-193.
Palermo, E., Hayes, D. R., Russo, E. F., Calabrò, R. S., Pacilli, A., & Filoni, S. (2018). Translational effects of robot-mediated therapy in subacute stroke patients: an experimental evaluation of upper limb motor recovery. PeerJ, 6(1), e5544. https://doi.org/0.7717/peerj.5544.
Peres, L. W., Leite, A. C. A. B., Alvarenga, W. de A., Ghazaoui, M. M. Al, Rahall, T. M., & Nascimento, L. C. (2018). Estratégias lúdicas na reabilitação motora de crianças com paralisia cerebral: revisão integrativa. Revista Eletrônica de Enfermagem, 20. https://doi.org/10.5216/REE.V20.50936
Porto, J. M., Iosimuta, N. C. R., Coelho, A. C., & Abreu, D. C. C. (2019). Recomendações para prescrição de dispositivos auxiliares da marcha em idosos. Revista Acta Fisiátrica, 26(3), 171-175. https://doi.org/10.11606/issn.2317-0190.v26i3a166646.
Postolache, O., Pereira, J. M. D., Viegas, V. & Pedro, L. (2015). Smart Walker Solutions for Physical Rehabilitation. IEEE Instrumentation and Measurement Magazine, 18(5), 21-30. https://doi.org/10.1109/MIM.2015.7271223.
Rabbi, Y., Mrabet, M., & Fnaiech, F. (2018). Intelligent Control Wheelchair Using a New Visual Joystick. Journal of Healthcare Engineering, 2018, 6083565. https://doi.org/10.1155/2018/6083565.
Remédio, T. P. (2019). Reabilitação fisioterapêutica por meio de jogos digitais: uma abordagem baseada em lógica fuzzy, camera de profundidade e dispositivos vestíveis. Dissertação (Mestrado em Ciência da Computação) - Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, 1-77.
Ribeiro, D. C., Milosavljevic, S., Terry J., & Abbott, J. H. (2017). Effectiveness of a lumbopelvic monitor and feedback device to change postural behaviour: a protocol for the ELF cluster randomised controlled trial. BMJ Open, 7(1). http://dx.doi.org/10.1136/bmjopen-2016-015568.
Rodrigues Junior, J. L., Muniz, L. S., & Xavier, M. B. (2015). A utilização da tecnologia assistiva para alimentação na melhora do desempenho ocupacional de hansenianos com mão em garra. Hansen International, 39(1), 22-29.
Shin, J. H., Kim, M. I., Lee, J. Y., Jeon, Y. J., Kim, S., Lee, S., Seo, B., & Choi, Y. (2016). Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 13, 17. https://doi.org/10.1186/s12984-016-0125-x.
Sierra M., S. D., Garzón, M., Múnera, M., & Cifuentes, C. A. (2019). Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors 2019, 19(13), 2897. https://doi.org/10.3390/S19132897.
Sierra, S. D., Múnera, M., Provot, T., Bourgain, M., & Cifuentes, C. A. (2021). Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness. Sensors, 21(9), 3242. https://doi.org/10.3390/s21093242.
Silva, P. M. M., Ledycnarf, J. H., & Morya, E. (2017). Inovação tecnológica na formação do fisioterapeuta. Revista Cadernos de Educação, Saúde e Fisioterapia, 4(8).
Tavares, C. S. M., Machado, B. R., Bischoff, B. M., & Scoz, M. (2020). Possibilidades da Tecnologia Touchscreen para desenvolvimento motor e inclusão digital de pessoas com Paralisia Cerebral. Centro de Estudios en Diseño y Comunicación, 83, 176-187. http://dx.doi.org/10.18682/cdc.vi83.3738.
Kammen, K. K., Reinders-Messelink, H. A., Elsinghorst, A. L., Wesselink, C. F., Vries, B. M., Woude, L. H. V., Boonstra, A. M., & Otter, R. (2020). Amplitude and stride-to-stride variability of muscle activity during Lokomat guided walking and treadmill walking in children with cerebral palsy. European Journal of Paediatric Neurology, 29, 108-117. https://doi.org/10.1016/j.ejpn. 2020.08.003.
Wang, Q., Timmermans, A., Chen, W., Jia, J., Ding, L., Xiong, L., Rong, J., & Markopoulos, P. (2018). Stroke Patient’s Acceptance of a Smart Garment for Supporting Upper Extremity Rehabilitation. IEEE Journal of Translational Engineering in Health and Medicine, 6, 2101009. https://doi.org/10.1109/JTEHM.2018.2853549.
Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., Giuliani, C., Light, K. E., & Nichols-Larsen, D. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. Jama, 296(17), 2095-2104. https://doi.org/ 10.1001/jama.296.17.2095.
Yang, G., Deng, J., Pang, G., Zhang, H., Li, J., Deng, B., Pang, Z., Xu, J., Jiang, M., Liljeberg, P., Xie, H., & Yang, H. (2018). An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning. IEEE Journal of Translational Engineering in Health and Medicine, 6. https://doi.org/10.1109/JTEHM.2018.2822681.
Yang, W. C., Wang, H. K., Wu, R. M., Lo, C. S., & Lin, K. H. (2016). Home-based virtual reality balance training and conventional balance training in Parkinson’s disease: A randomized controlled trial. Journal of the Formosan Medical Association = Taiwan Yi Zhi, 115(9), 734–743. https://doi.org/10.1016/J.JFMA.2015.07.012.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Geraldo Carvalho Magalhães; Bárbarah Carolyne Moreira Rodrigues Antas; Renata de Lima Martins; Camila Fernandes Pontes dos Santos; Patrick Kervin de Almeida Chaves; Adriana Costa-Ribeiro
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.