Implicaciones y beneficios de la Rehabilitación Inteligente en disfunciones neurológicas: una revisión narrativa

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.24856

Palabras clave:

Dispositivos de autoayuda; Fisioterapia; Enfermidade del sistema nervioso.

Resumen

Objetivo: La fisioterapia neurofuncional, en todo el mundo, avanza con el propósito de proporcionar nuevas herramientas que auxilien el proceso de rehabilitación de pacientes con disfunciones e incapacidades neuromusculoesqueléticas. Actualmente, el proceso de recuperación se potencia con la implantación de dispositivos robóticos, electrónicos y portátiles (DREV). Esta revisión bibliográfica aborda los dispositivos inteligentes y discute el uso de los mismos en la población, categorizándolos y explotando su aplicabilidad en la fisioterapia de los DREV. Métodos: Se recopilaron artículos en lengua inglesa y portuguesa de la base de datos Pubmed, Scielo, Bireme, ResearchGate y otras fuentes publicadas en los últimos 10 años y posteriormente se compararon y se analizaron para determinar su relevancia para finalmente incluirlos en el artículo después de una rigurosa revisión.  Resultados: Se analizó un total de 53 artículos sobre dispositivos inteligentes cualitativamente y también se sintetizaron las informaciones. Esta revisión bibliográfica muestra que los DREV han ganado más espacio en el proceso de rehabilitación fisioterapéutica y que pueden utilizarse en diferentes segmentos del cuerpo humano ya que transforman la calidad de vida de los usuarios. Conclusión: A pesar de las limitaciones y de la disponibilidad de esta tecnología para la población más pobre, se cree que los dispositivos son opciones promisoras en el campo da salud. La implantación en el espectro clínico hospitalar y accesibilidad de los DREV necesitan una discusión interdisciplinar entre las diversas categorías de la salud para tener una oferta mejor de cuidados a las personas con condiciones neuromusculoesqueléticas.

Citas

Albuquerque, V. S., Fernandes, L. P., & Mármora, C. H. C. (2019). O uso de dispositivos auxiliares para marcha em idosos e sua relação com autoeficácia para quedas. Revista Hospital Universitário Pedro Ernesto, 17(2), 51–56. https://doi.org/10.12957/rhupe.2018.40858.

Almeida, O. P., Yeap, B. B., Alfonso, H., Hankey, G. J., Flicker, L., & Norman, P. E. (2012). Older Men Who Use Computers Have Lower Risk of Dementia. PLoS ONE, 7(8), 1–6. https://doi.org/10.1371/journal.pone.0044239.

Argañarás, J. G., Wong, Y. T., Begg, R., & Karmakar, N. C. (2021). State-of-the-art wearable sensors and possibilities for radar in fall prevention. Sensors, 21(20), 1–23. https://doi.org/10.3390/s21206836.

Atashzar, S. F., Carriere, J., & Tavakoli, M. (2021). Review : How Can Intelligent Robots and Smart Mechatronic Modules Facilitate Remote Assessment , Assistance , and Rehabilitation for Isolated Adults With Neuro-Musculoskeletal Conditions ?. Frontiers and Robotics and AI, 8, 1–19. https://doi.org/10.3389/frobt.2021.610529.

Azevedo, G. T., & Maltempi, M. V. (2021). Invenções robóticas para o Tratamento de Parkinson: pensamento computacional e formação matemática. Bolema: Boletim de Educação Matemática, 35(69), 63–88. https://doi.org/10.1590/1980-4415V35N69A04.

Bao, T., Carender, W. J., Kinnaird, C., Barone, V. J., Peethambaran, G., Whitney, S. L., Kabeto, M., Seidler, R. D., & Sienko, K. H. (2018). Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: A randomized preliminary study. Journal of NeuroEngineering and Rehabilitation, 15(1), 1–13. https://doi.org/10.1186/s12984-017-0339-6.

Brasil (2009). Tecnologia Assistiva. Brasília

Barreto, G. F. M., Aversari, L. O. C., Barreto, R. G. (2019). Gerência de Projetos em Computação Vestível: Diretrizes para o Desenvolvimento de Produtos Vestíveis Inteligentes, 388–416. Atena editora.

Bayón, C., Lerma, S., Ramírez, O., Serrano, J. I., Del Castillo, M. D., Raya, R., Martínez, I., & Rocon, E. (2016). Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population : short report. Journal of NeuroEngineering and Rehabilitation, https://doi.org/10.1186/s12984-016-0206-x.

Bayón, C., Ramirez, O., Del Castillo, M. D., Serrano, J. I., Raya, R., Belda-Lois, J. M., Poveda, R., Mollà, F., Martín, T., Martínez, I., Lara, S. L., & Rocon, E. (2016). CPWalker: Robotic Platform for Gait Rehabilitation in Patients with Cerebral Palsy. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), 3736–3741.

Bisio, I., Garibotto, C., Lavagetto, F., & Sciarrone, A. (2019). When eHealth Meets IoT : A Smart Wireless System for Post-Stroke Home Rehabilitation. IEEE Wireless Communications, 26(6), 24–29.

Carnevale, A., Longo, U. G., Schena, E., Massaroni, C., Lo Presti, D., Berton, A., Candela, V., & Denaro, V. (2019). Wearable systems for shoulder kinematics assessment: A systematic review. BMC Musculoskeletal Disorders, 20(1), 1–24. https://doi.org/10.1186/S12891-019-2930-4/FIGURES/3

Caro, C. C., Costa, J. D., & Cezar da Cruz, D. M. (2018). O uso de dispositivos auxiliares para a mobilidade e a independência funcional em sujeitos com Acidente Vascular Cerebral. Cadernos Brasileiros de Terapia Ocupacional, 26(3), 558–568. https://doi.org/10.4322/2526-8910.CTOAO1117

Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health / Types of literature review: considerations of the editors of the Journal of Nursing and Health. Journal of Nursing and Health, 10(5), 1–7. https://doi.org/10.15210/jonah.v10i5.19924

Cogollor, J. M., Rojo-lacal, J., Hermsdörfer, J., Ferre, M., Waldmeyer, M. T. A., Giachritsis, C., Armstrong, A., Martinez, J. M. B., Loza, D. A. B, & Sebastián, J. M. (2018). Evolution of Cognitive Rehabilitation After Stroke From Traditional Techniques to Smart and Personalized Home-Based Information and Communication Technology Systems : Literature Review. JMIR rehabilitation and assistive technologies, 5(1). https://doi.org/10.2196/rehab.8548.

Coimbra, T. M., Ezequiel, C. T., Moreira, D. S., Morita, M. P. A., Castiglioni, L., & Bianchin, M. A. (2018). Comunicação Alternativa Ampliada na Esclerose Lateral Amiotrófica: a tecnologia a favor da reabilitação. Arquivos de Ciências da Saúde – Faculdade de Medicina de São José do Rio Preto – FAMERP, 25(3), 22. http://dx.doi.org/10.17696/2318-3691.25.3.2018.1054.

Damiano, D. L., Prosser, L. A., Curatalo, L. A., & Alter, K. E. (2013). Muscle Plasticity and Ankle Control After Repetitive Use of a Functional Electrical Stímulation Device for Foot Drop in Cerebral Palsy. Neurorehabilitation Neural Repair, 27(3), 200-207. https://doi.org/10.1177/1545968312461716.

Davies, R. J., Parker, J., Mccullagh, P., & Zheng, H. (2016). A Personalized Self-Management Rehabilitation System for Stroke Survivors : A Quantitative Gait Analysis Using a Smart Insole. JMIR Rehabil Assist Technol, 3(2), 1–13. https://doi.org/10.2196/rehab.5449.

Elsner, V. R., Trevizol, L., De Leon, I., Silva, M., Weiss, T., Braga, M., Pochmann, D., Blembeel, A. S., Dani, C., & Boggio, E. (2021). Therapeutic effectiveness of a single exercise session combined with WalkAide functional electrical stimulation in post-stroke patients : a crossover design study. Neural Regen Res. 16(5), 805–812.

Emmerson, K. B., Harding, K. E., Lockwood, K. J., & Taylor, N. F. (2018). Home exercise programs supported by video and automated reminders for patients with stroke: A qualitative analysis. Australian Occupational Therapy Journal, 65(3), 187–197. https://doi.org/10.1111/1440-1630.12461.

Finch, T. R., Finch, P. D., & Cook, D. R. (2016). Assistive apparatus for hand held vessels or items. U.S. Patent, 237(9), 796.

Ginis, P., Nackaerts, E., Nieuwboer, A., & Heremans, E. (2018). ScienceDirect Cueing for people with Parkinson’s disease with freezing of gait : A narrative review of the state-of-the-art and novel perspectives. Annals of Physical and Rehabilitation Medicine.61, 407–413.

Ireno, J. M., Chen, N., Zafani, M. D., & Baleotti, L.R. (2019). O uso de órteses em crianças com paralisia cerebral. Cardenos Brasileiros de Terapia Ocupacional, 27(1), 35-44. https://doi.org/10.4322/2526-8910.ctoAO1612.

Kettlewell, J., das Nair, R., & Radford, K. (2019). A systematic review of personal smart technologies used to improve outcomes in adults with acquired brain injuries. Clinical Rehabilitation, 33(11), 1705-1712. https://doi.org/10.1177/0269215519865774.

Ko, B. W., Lee, H. Y., & Song, W. K. (2016). Rhythmic auditory stimulation using a portable smart device: Short-term effects on gait in chronic hemiplegic stroke patients. Journal of Physical Therapy Science, 28(5), 1538-1543. https://doi.org/10.1589/jpts.28.1538

Korzeniewska, E., Krawczyk, A., Mróz, J., Wyszyńska, E., & Zawiślak, R. (2020). Applications of smart textiles in post-stroke rehabilitation. Sensors (Switzerland), 20(8), 1–12. https://doi.org/10.3390/s20082370

Lee, H. Y., Ko, B. H., Song, W. K., Kim, H., & Shin, J. H. ( 2015). Rhythmic Auditory Stimulation for Robot-Assisted Gait Rehabilitation: a preliminar study. IEEE International Conference on Advanced Intelligent Mechatronics (AIM). https://doi.org/10.1109/AIM.2015.7222569.

Llorente, J. O. (2019). The potential of error-related potentials. Analysis and decoding for control, neuro-rehabilitation and motor substitution. Fundácion Dialnet. Available in: https://dialnet.unirioja.es/servlet/tesis?codigo=257829. Access in: 19 november 2021.

Lobo, M. A., Hall, M. L., Greenspan, B., Rohloff, P., Prosser, L. A., & Smith, B. A. (2019). Wearables for Pediatric Rehabilitation: How to Optimally Design and Use Products to Meet the Needs of Users. Physical Therapy, 99(6), 647–657. https://doi.org/10.1093/PTJ/PZZ024.

Lu, L., Zhang, J., Xie, Y., Gao, F., Xu, S., Wu, X., & Ye, Z. (2020). Wearable health devices in health care: Narrative systematic review. JMIR MHealth and UHealth, 8(11). https://doi.org/10.2196/18907.

Mendes, G. C., Barros, F. S., & Nohama, P. (2018). Tecnologia assistiva lúdica para ganho de funcionalidade. Revista da Universidade Vale do Rio Verde, 16(2), 1-10. http://dx.doi.org/10.5892/ruvrd.v16i2.4975.g10951282.

Mohammadi-Abdar, H., Ridgel, A. L., Discenzo, F. M., & Loparo, K. A. (2016). Design and Development of a Smart Exercise Bike for Motor Rehabilitation in Individuals with Parkinson’s Disease. IEEE/ASME Transactions on Mechatronics : A Joint Publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, 21(3), 1650–1658. https://doi.org/10.1109/TMECH.2015.2508030

Monge, J., & Postolache, O. (2018). Augmented reality and smart sensors for physical rehabilitation. In: 2018 International Conference and Exposition on Electrical And Power Engineering (EPE). International Conference and Exposition on Electrical and Power Engineering (EPE), 1010-1014. https://doi.org/10.1109/ICEPE.2018.8559935.

Morgado, F. L., & Rossil, L. A. (2011). Correlação entre a escala de coma de Glasgow e os achados de imagem de tomografia computadorizada em pacientes vítimas de traumatismo crânio encefálico. Radiologia Brasileira, 44(1), 35-41. https://doi.org/10.1590/S0100-39842011000100010.

Nam, K. Y., Kim, H. J., Kwon, B. S., Park, J., Lee, H. J., & Yoo, A. (2017). Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. Journal of NeuroEngineering and Rehabilitation, 14(1), 24. https://doi.org/10.1186/s12984-017-0232-3.

Neto, L. L., Júnior, M. C. F., & Chun, R. Y. S. (2021). Amyotrophic lateral sclerosis, dysarthria, and language disorders – type of reserach and approaches in diferente areas: an integrative literature review. Revista CEFAC, 23(1), 01-13. http://dx.doi.org/10.1590/1982-0216/20212318220.

Neto, H. P., Grecco, Christovão, T. C. L., L. A. C., Braun, L. A., Giannasi, L. C., Salgado, A. S. I., Moura, R. C. F., Carvalho, P. T. C., Corrêa, J. C. F., Sampaio, L. M. M., Galli, M. & Oliveira, C. S. (2012). Effect of posture-control insoles on function in children with cerebral palsy: Randomized controlled clinical trial. BMC Musculoskelet Disord, 13(193). https://doi.org/10.1186/1471-2474-13-193.

Palermo, E., Hayes, D. R., Russo, E. F., Calabrò, R. S., Pacilli, A., & Filoni, S. (2018). Translational effects of robot-mediated therapy in subacute stroke patients: an experimental evaluation of upper limb motor recovery. PeerJ, 6(1), e5544. https://doi.org/0.7717/peerj.5544.

Peres, L. W., Leite, A. C. A. B., Alvarenga, W. de A., Ghazaoui, M. M. Al, Rahall, T. M., & Nascimento, L. C. (2018). Estratégias lúdicas na reabilitação motora de crianças com paralisia cerebral: revisão integrativa. Revista Eletrônica de Enfermagem, 20. https://doi.org/10.5216/REE.V20.50936

Porto, J. M., Iosimuta, N. C. R., Coelho, A. C., & Abreu, D. C. C. (2019). Recomendações para prescrição de dispositivos auxiliares da marcha em idosos. Revista Acta Fisiátrica, 26(3), 171-175. https://doi.org/10.11606/issn.2317-0190.v26i3a166646.

Postolache, O., Pereira, J. M. D., Viegas, V. & Pedro, L. (2015). Smart Walker Solutions for Physical Rehabilitation. IEEE Instrumentation and Measurement Magazine, 18(5), 21-30. https://doi.org/10.1109/MIM.2015.7271223.

Rabbi, Y., Mrabet, M., & Fnaiech, F. (2018). Intelligent Control Wheelchair Using a New Visual Joystick. Journal of Healthcare Engineering, 2018, 6083565. https://doi.org/10.1155/2018/6083565.

Remédio, T. P. (2019). Reabilitação fisioterapêutica por meio de jogos digitais: uma abordagem baseada em lógica fuzzy, camera de profundidade e dispositivos vestíveis. Dissertação (Mestrado em Ciência da Computação) - Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, 1-77.

Ribeiro, D. C., Milosavljevic, S., Terry J., & Abbott, J. H. (2017). Effectiveness of a lumbopelvic monitor and feedback device to change postural behaviour: a protocol for the ELF cluster randomised controlled trial. BMJ Open, 7(1). http://dx.doi.org/10.1136/bmjopen-2016-015568.

Rodrigues Junior, J. L., Muniz, L. S., & Xavier, M. B. (2015). A utilização da tecnologia assistiva para alimentação na melhora do desempenho ocupacional de hansenianos com mão em garra. Hansen International, 39(1), 22-29.

Shin, J. H., Kim, M. I., Lee, J. Y., Jeon, Y. J., Kim, S., Lee, S., Seo, B., & Choi, Y. (2016). Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 13, 17. https://doi.org/10.1186/s12984-016-0125-x.

Sierra M., S. D., Garzón, M., Múnera, M., & Cifuentes, C. A. (2019). Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors 2019, 19(13), 2897. https://doi.org/10.3390/S19132897.

Sierra, S. D., Múnera, M., Provot, T., Bourgain, M., & Cifuentes, C. A. (2021). Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness. Sensors, 21(9), 3242. https://doi.org/10.3390/s21093242.

Silva, P. M. M., Ledycnarf, J. H., & Morya, E. (2017). Inovação tecnológica na formação do fisioterapeuta. Revista Cadernos de Educação, Saúde e Fisioterapia, 4(8).

Tavares, C. S. M., Machado, B. R., Bischoff, B. M., & Scoz, M. (2020). Possibilidades da Tecnologia Touchscreen para desenvolvimento motor e inclusão digital de pessoas com Paralisia Cerebral. Centro de Estudios en Diseño y Comunicación, 83, 176-187. http://dx.doi.org/10.18682/cdc.vi83.3738.

Kammen, K. K., Reinders-Messelink, H. A., Elsinghorst, A. L., Wesselink, C. F., Vries, B. M., Woude, L. H. V., Boonstra, A. M., & Otter, R. (2020). Amplitude and stride-to-stride variability of muscle activity during Lokomat guided walking and treadmill walking in children with cerebral palsy. European Journal of Paediatric Neurology, 29, 108-117. https://doi.org/10.1016/j.ejpn. 2020.08.003.

Wang, Q., Timmermans, A., Chen, W., Jia, J., Ding, L., Xiong, L., Rong, J., & Markopoulos, P. (2018). Stroke Patient’s Acceptance of a Smart Garment for Supporting Upper Extremity Rehabilitation. IEEE Journal of Translational Engineering in Health and Medicine, 6, 2101009. https://doi.org/10.1109/JTEHM.2018.2853549.

Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., Giuliani, C., Light, K. E., & Nichols-Larsen, D. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. Jama, 296(17), 2095-2104. https://doi.org/ 10.1001/jama.296.17.2095.

Yang, G., Deng, J., Pang, G., Zhang, H., Li, J., Deng, B., Pang, Z., Xu, J., Jiang, M., Liljeberg, P., Xie, H., & Yang, H. (2018). An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning. IEEE Journal of Translational Engineering in Health and Medicine, 6. https://doi.org/10.1109/JTEHM.2018.2822681.

Yang, W. C., Wang, H. K., Wu, R. M., Lo, C. S., & Lin, K. H. (2016). Home-based virtual reality balance training and conventional balance training in Parkinson’s disease: A randomized controlled trial. Journal of the Formosan Medical Association = Taiwan Yi Zhi, 115(9), 734–743. https://doi.org/10.1016/J.JFMA.2015.07.012.

Publicado

08/01/2022

Cómo citar

MAGALHÃES, G. C.; ANTAS, B. C. M. R.; MARTINS, R. de L.; SANTOS, C. F. P. dos; CHAVES, P. K. de A.; COSTA-RIBEIRO, A. . Implicaciones y beneficios de la Rehabilitación Inteligente en disfunciones neurológicas: una revisión narrativa. Research, Society and Development, [S. l.], v. 11, n. 1, p. e34111124856, 2022. DOI: 10.33448/rsd-v11i1.24856. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24856. Acesso em: 5 ene. 2025.

Número

Sección

Ciencias de la salud