iGENE: Aplicación para la identificación genómica de levaduras y filamentosas
DOI:
https://doi.org/10.33448/rsd-v11i2.25103Palabras clave:
Biotecnología; Visión por computador; Procesamiento de imágenes; Identificación de microorganismos; Perfil de restricción; Biblioteca.Resumen
Las innovaciones en las metodologías para la identificación de microorganismos genómicos y proteómicos asociados a las tecnologías digitales están en línea con la visión de la industria 4.0. El objetivo de este trabajo fue desarrollar un prototipo de aplicación (App) para la identificación de hongos filamentosos y levaduras a nivel de especie. La construcción del prototipo se realizó para presentar una aplicación web con una interfaz receptiva. La aplicación fue desarrollada en cloud computing con un modelo en cascada. Como parte de los requisitos de la aplicación, se creó una base de datos de Cloud Firestore con procesamiento de imágenes a través de una biblioteca skImage. Para ello, se seleccionaron geles de agarosa con perfiles de restricción de hongos filamentosos y levaduras previamente identificadas a nivel de especie mediante metodologías genómicas (PCR / RFLP) y proteómicas (espectrometría de masas). La aplicación identificada como iGENE pudo reconocer perfiles de restricción de geles de agarosa, comparándolo con hongos filamentosos y levaduras registrados en su biblioteca. El resultado a nivel de especie fue posible para perfiles con más del 90% de similitud. Si bien las imágenes analizadas presentaban este perfil, la App fue construida para considerar también identificaciones a nivel de género para similitudes entre 89 y 70%, así como “microorganismos no identificados” por debajo de esta puntuación. La inclusión de nuevas especies de hongos filamentosos y levaduras en la librería de la App permitirá una mayor robustez en la generación del resultado de identificación a nivel de especie.
Citas
A. Rockenbach, D., Anderle, N., Griebler, D., & Souza, S. (2018). Estudo Comparativo de Bancos de Dados NoSQL. Revista Eletrônica Argentina-Brasil ne Tecnologias na Informação e da Comunicação, 1(8), http://dx.doi.org/10.5281/zenodo.1228503.
Barbosa, Kevin Haley et al. Impacto do MALDI-TOF no diagnóstico da Sepse: uma revisão integrativa / Impact of MALDI-TOF in the diagnosis of Sepsis: an integrative review. Brazilian Journal of Development, 7(6), 58556-58574, https://doi.org/10.34117/bjdv7n6-313.
Cole, L., Austin, D., & Cole, L. (2004). Visual object recognition using template matching. In Australian conference on robotics and automation.
Chaves Moreira, T., & Rene S. M. Souza, M. (2020). O uso da espectrometria de massa maldi tof na identificação de microrganismos para diagnóstico laboratorial. Revista Eletrônica Biociências, Biotecnologia e Saúde, 12(24), 53–59. https://interin.utp.br/index.php/GR1/article/view/2445/2047
Ericsson de Oliveira Xavier, A. R., Cardoso, L., Brito, R. V. J., Nobre, S. A. M., De Almeida, A. C., Ericsson de Oliveira, A. M., & De Sousa Xavier, M. A. (2019). Detection and identification of medically important microorganisms isolated from pigeon excreta collected in a university in a newly industrialized country. Biotemas, 32(1), 11–20. https://doi.org/10.5007/2175-7925.2019v32n1p11
Elmasri, R., & Navathe, S. B. (2011). Sistemas de Banco de Dados (6th ed.). Person Addison Wesley.
Feliciano, F. F., Souza, I. L. d., & Leta, F. R. (2010). Visão computacional aplicacada à metrologia dimensional automatizada: considerações sobre sua exatidão. Engevista, 7(2). https://doi.org/10.22409/engevista.v7i2.164
Fernandes, L. F., Souza, G. Á. A. D., Almeida, A. C. d., Cardoso, L., Xavier, M. A. d. S., Pinheiro, T. P. P., Cruz, G. H. S. d., Dourado, H. F. S., Silva, W. S., & Xavier, A. R. E. d. O. (2020). Identification and characterization of methicillin-resistant Staphylococcus spp. isolated from surfaces near patients in an intensive care unit of a hospital in southeastern Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 53. https://doi.org/10.1590/0037-8682-0244-2020
Google. (2021, July 16). Como exibir sites. Centro de arquitetura do Cloud. https://cloud.google.com/architecture/web-serving-overview?hl=pt_br#app-engine
Kordalewska, M., Kalita, J., Bakuła, Z., Brillowska-Dąbrowska, A., & Jagielski, T. (2018). PCR-RFLP assays for species-specific identification of fungi belonging to Scopulariopsis and related genera. Medical Mycology, 57(5), 643–648. https://doi.org/10.1093/mmy/myy106
Lima, F. R., & Gomes, R. (2020). Conceitos e tecnologias da indústria 4.0. Revista Brasileira de Inovação, 19, Artigo e0200023. https://doi.org/10.20396/rbi.v19i0.8658766
Luciana Nobre, L., Felipe José Nobre, L., Mauro Aparecido, d. S. X., Josiane, d. S., Leia, C., Frederico Santos, B., Rosimar Fonseca, d. S., Soraia Aparecida Maia, D., & Alessandra Rejane Ericsson, d. O. X. (2020). Molecular identification and characterization of filamentous fungi and yeasts isolated in a pharmaceutical industry environment. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2020.10704
Oliveira, M. A. L., Lago, C. L. d., Tavares, M. F. M., & Silva, J. A. F. d. (2003). Análise de ácidos graxos por eletroforese capilar utilizando detecção condutométrica sem contato. Química Nova, 26(6), 821–824.
Robledo-Leal, E., Rivera-Morales, L. G., Sangorrín, M. P., González, G. M., Ramos-Alfano, G., Adame-Rodriguez, J. M., Alcocer-Gonzalez, J. M., Arechiga-Carvajal, E. T., & Rodriguez-Padilla, C. (2018). Identification and susceptibility of clinical isolates of Candida spp. to killer toxins. Brazilian Journal of Biology, 78(4), 742–749. https://doi.org/10.1590/1519-6984.175635
Ronaldo Albertin, M., Luiza Bufalari Elienesio, M., dos Santos Aires, A., Lopes Jaguaribe Pontes, H., & Pinheiro Aragão, D. (2017). Principais inovações tecnológicas da Indústria 4.0 e suas aplicações e implicações na manufatura. In XXIV Simpósio de Engenharia se Produção.
Rosa, M. A. da, Brun, A. L., & Kiel, G. (2011). Ferramenta Multiplataforma para Construção Automática de Dendogramas a partir de Imagens de Eletroforese. Revista de Exatas e TECnológicas, 2(1), 08-17.
Sayuri Tahara Amaral, C., de Souza, O., Hilkner de Souza, L., José da Silva, G., & Noboru Fatori Trevizan, L. (2020). Novos caminhos da biotecnologia: As inovações da indústria 4.0 na saúde humana. Revista Brasileira Multidisciplinar, 23(3), 203–231. https://doi.org/0.25061/2527-2675/ReBraM/2020.v23i3.889
Santos, J., Xavier, M. A. S., Cardoso, L., Nobre, S. A. M., Bacchi, R. R., Cangussu, C. H. C., Almeida, A. C., Leite, L. N., Barreto, N. A. P., & Xavier, A. R. E. O. (2020). Research Article Identification and molecular analysis of yeasts found in domestic pigeon droppings in Montes Claros, MG, Brazil. Genetics and Molecular Research, 19(1). https://doi.org/10.4238/gmr18521
Soares, L. F. S.; Stein, L. H.; Tieppo, E.; Moro, J. M. S.; Coutinho, M. A., Raittz, R. T.; Marchaukosk, J. N., Iris Hass, Picheth, G. (2010). Análise Eletroforética em Géis Unidimensionais: Nova Abordagem Focada em Inteligência Artificial e Estudo Comparativo de Soluções. In: VI WORKSHOP DE VISÃO COMPUTACIONAL WVC 2010.
Sommerville, I. (2011). Engenharia de Software (9th ed.). Person Prentice Hall.
Telles, E. S., Barone, D. A. C., & Da Silva, A. M. (2020). Inteligência Artificial no Contexto da Indústria 4.0. In Workshop sobre as Implicações da Computação na Sociedad. Sociedade Brasileira de Computação. https://doi.org/10.5753/wics.2020.11044
Teixeira, R. L. P., Teixeira, C. H. S. B., Brito, M. L. d. A., & Silva, P. C. D. (2019). Os discursos acerca dos desafios da siderurgia na indústria 4.0 no Brasil. Brazilian Journal of Development, 5(12), 28290–28309. https://doi.org/10.34117/bjdv5n12-016
Tsuchida, S., Umemura, H., & Nakayama, T. (2020). Current status of matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) in clinical diagnostic microbiology. Molecules, 25(20), 4775. https://doi.org/10.3390/molecules25204775
Wang, C., Gao, X., Wang, S., & Liu, Y. (2020). A smartphone-integrated paper sensing system for fluorescent and colorimetric dual-channel detection of foodborne pathogenic bacteria. Analytical and Bioanalytical Chemistry, 412(3), 611–620. https://doi.org/10.1007/s00216-019-02208-z
Zhu, X., Yan, S., Yuan, F., & Wan, S. (2020). The applications of nanopore sequencing technology in pathogenic microorganism detection. Canadian Journal of Infectious Diseases and Medical Microbiology, 2020, 1–8. https://doi.org/10.1155/2020/6675206
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Selena Dias Borborema Antunes; Heveraldo Rodrigues de Oliveira ; Marcos Flávio Silveira D'Angelis; Mauro Aparecido de Sousa Xavier; Fabiana Brandão Alves Silva; Dario Alves de Oliveira; Luciana Nobre Leite; Josiane dos Santos; Frederico Santos Barbosa; Alessandra Rejane Ericsson de Oliveira Xavier
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.