Composición fenólica y métodos de extracción de frutas brasileñas: jabuticaba (Plinia spp.), açaí (Euterpe oleraceae Mart.), jussara (Euterpe edulis Mart.) y cacau (Theobroma cacao L.)
DOI:
https://doi.org/10.33448/rsd-v11i2.25640Palabras clave:
Campo eléctrico pulsado; Disolvente eutéctico; Extracción con fluido supercrítico; Ultrasonido.Resumen
El Brasil es conocido por presentar gran diversidad botánica. Las especies frutales nativas de jabuticaba (Plinia spp.), açaí (Euterpe oleraceae Mart.), jussara (Euterpe edulis Mart.) y cacao (Theobroma cacao L.) se destacan por su alta capacidad antioxidante y diversa composición fenólica, que son objeto de varios estudios con el objetivo de la extracción de fracciones fenólicas para su caracterización y aplicabilidad. Esta revisión tuvo como objetivo discutir los principales fenoles identificados en estas cuatro especies de plantas y una descripción general de los métodos más recientes de extracción de compuestos fenólicos de estas especies. Este trabajo puede contribuir a futuros proyectos de investigación, ayudando a los investigadores a alcanzar métodos eficientes de extracción.
Citas
Afoakwa, E. O. (2016). Chocolate Science and Technology. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118913758
Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P. P., Barros, L., & Ferreira, I. C. F. R. (2021). Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function, 12(1), 14–29. https://doi.org/10.1039/D0FO02324H
Alezandro, M. R., Dubé, P., Desjardins, Y., Lajolo, F. M., & Genovese, M. I. (2013). Comparative study of chemical and phenolic compositions of two species of jaboticaba: Myrciaria jaboticaba (Vell.) Berg and Myrciaria cauliflora (Mart.) O. Berg. Food Research International, 54(1), 468–477. https://doi.org/10.1016/j.foodres.2013.07.018
Alezandro, M. R., Granato, D., & Genovese, M. I. (2013). Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Food Research International, 54(1), 650–659. https://doi.org/10.1016/j.foodres.2013.07.041
Aliaño-González, M. J., Ferreiro-González, M., Espada-Bellido, E., Carrera, C., Palma, M., Álvarez, J. A., & F. Barbero, G. (2020). Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. Agronomy, 10(2), 183. https://doi.org/10.3390/agronomy10020183
Arlorio, M., Locatelli, M., Travaglia, F., Coïsson, J.-D., Grosso, E. Del, Minassi, A., & Martelli, A. (2008). Roasting impact on the contents of clovamide (N-caffeoyl-L-DOPA) and the antioxidant activity of cocoa beans (Theobroma cacao L.). Food Chemistry, 106(3), 967–975. https://doi.org/10.1016/j.foodchem.2007.07.009
Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials : A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
Baptista, S. de L., Copetti, C. L. K., Cardoso, A. L., & Di Pietro, P. F. (2021). Biological activities of açaí ( Euterpe oleracea Mart.) and juçara ( Euterpe edulis Mart.) intake in humans: an integrative review of clinical trials. Nutrition Reviews. https://doi.org/10.1093/nutrit/nuab002
Barbosa-Pereira, L., Guglielmetti, A., & Zeppa, G. (2018). Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food and Bioprocess Technology, 11(4), 818–835. https://doi.org/10.1007/s11947-017-2045-6
Barros, L., Calhelha, R. C., Queiroz, M. J. R. P., Santos-Buelga, C., Santos, E. A., Regis, W. C. B., & Ferreira, I. C. F. R. (2015). The powerful in vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Industrial Crops and Products, 76, 318–322. https://doi.org/10.1016/j.indcrop.2015.05.086
Barroso, M. E. S., Oliveira, B. G., Pimentel, E. F., Pereira, P. M., Ruas, F. G., Andrade, T. U., & Endringer, D. C. (2019). Phytochemical profile of genotypes of Euterpe edulis Martius – Juçara palm fruits. Food Research International, 116(21), 985–993. https://doi.org/10.1016/j.foodres.2018.09.036
Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., & Kumar, J. (2018). A critical analysis of extraction techniques used for botanicals : Trends , priorities , industrial uses and optimization strategies. Trends in Analytical Chemistry, 100, 82–102. https://doi.org/10.1016/j.trac.2017.12.018
Bento-Silva, A., Koistinen, V. M., Mena, P., Bronze, M. R., Hanhineva, K., Sahlstrøm, S., & Aura, A.-M. (2020). Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability? European Journal of Nutrition, 59(4), 1275–1293. https://doi.org/10.1007/s00394-019-01987-6
Borges, G. D. S. C., Gonzaga, L. V., Jardini, F. A., Mancini Filho, J., Heller, M., Micke, G., & Fett, R. (2013). Protective effect of Euterpe edulis M. on Vero cell culture and antioxidant evaluation based on phenolic composition using HPLC-ESI-MS/MS. Food Research International, 51(1), 363–369. https://doi.org/10.1016/j.foodres.2012.12.035
Borges, P. R. S., Tavares, E. G., Guimarães, I. C., Rocha, R. de P., Araujo, A. B. S., Nunes, E. E., & Vilas Boas, E. V. de B. (2016). Obtaining a protocol for extraction of phenolics from açaí fruit pulp through Plackett–Burman design and response surface methodology. Food Chemistry, 210, 189–199. https://doi.org/10.1016/j.foodchem.2016.04.077
Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai-Mallet, L., Fernández-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485–498. https://doi.org/10.1016/j.jff.2014.07.016
Caldas, T. W., Mazza, K. E. L., Teles, A. S. C., Mattos, G. N., Brígida, A. I. S., Conte-Junior, C. A., … Tonon, R. V. (2018). Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Industrial Crops and Products, 111, 86–91. https://doi.org/10.1016/j.indcrop.2017.10.012
Calloni, C., Agnol, R. D., Martínez, L. S., de Siqueira Marcon, F., Moura, S., & Salvador, M. (2015). Jaboticaba (Plinia trunciflora (O. Berg) Kausel) fruit reduces oxidative stress in human fibroblasts cells (MRC-5). Food Research International, 70, 15–22. https://doi.org/10.1016/j.foodres.2015.01.032
Capuzzo, A., Maffei, M. E., & Occhipinti, A. (2013). Supercritical Fluid Extraction of Plant Flavors and Fragrances. Molecules, 18, 7194–7238. https://doi.org/10.3390/molecules18067194
Carrillo, L. C., Londoño-Londoño, J., & Gil, A. (2014). Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Research International, 60, 273–280. https://doi.org/10.1016/j.foodres.2013.06.019
Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), 2611. https://doi.org/10.1038/s41598-020-59451-z
Citadin, I., Danner, M. A., & Sasso, S. A. Z. (2010). Jabuticabeiras. Revista Brasileira de fruticultura, 32(2), 343–656.
Costa, D. C., Costa, H. S., Albuquerque, T. G., Ramos, F., Castilho, M. C., & Sanches-Silva, A. (2015). Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends in Food Science & Technology, 45(2), 336–354. https://doi.org/10.1016/j.tifs.2015.06.009
D’Souza, R. N., Grimbs, S., Behrends, B., Bernaert, H., Ullrich, M. S., & Kuhnert, N. (2017). Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 99, 550–559. https://doi.org/10.1016/j.foodres.2017.06.007
Dass, C. (2007). Fundamentals of contemporary mass spectrometry (16a ed). John Wiley & Sons.
Favreto, R. (2010). Aspectos etnoecológicos e ecofisiológicos de Euterpe edulis Mart.(Arecaceae). Tese, 143. http://www.lume.ufrgs.br/handle/10183/26311
Febrianto, N. A., & Zhu, F. (2019). Diversity in Composition of Bioactive Compounds Among 26 Cocoa Genotypes. Journal of Agricultural and Food Chemistry, 67(34), 9501–9509. https://doi.org/10.1021/acs.jafc.9b03448
Febrianto, N. A., & Zhu, F. (2020). Changes in the Composition of Methylxanthines, Polyphenols, and Volatiles and Sensory Profiles of Cocoa Beans from the Sul 1 Genotype Affected by Fermentation. Journal of Agricultural and Food Chemistry, 68(32), 8658–8675. https://doi.org/10.1021/acs.jafc.0c02909
Febrianto, N. A., & Zhu, F. (2022). Composition of methylxanthines, polyphenols, key odorant volatiles and minerals in 22 cocoa beans obtained from different geographic origins. LWT, 153, 112395. https://doi.org/10.1016/j.lwt.2021.112395
Felzenszwalb, I., Regina, M., Mazzei, J. L., & Aiub, C. A. F. (2013). Toxicological evaluation of Euterpe edulis : A potential superfruit to be considered. Food and Chemical Toxicology, 58, 536–544. https://doi.org/10.1016/j.fct.2013.05.029
Feumba Dibanda, R., Panyoo Akdowa, E., Rani P., A., Metsatedem Tongwa, Q., & Mbofung F., C. M. (2020). Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings. Food Chemistry, 302, 125308. https://doi.org/10.1016/j.foodchem.2019.125308
Flora do Brasil 2020. (2021). Jardim Botânico do Rio de Janeiro. https://doi.org/10.47871/jbrj2021001
Garcia-Mendoza, M. del P., Espinosa-Pardo, F. A., Baseggio, A. M., Barbero, G. F., Maróstica Junior, M. R., Rostagno, M. A., & Martínez, J. (2017). Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. The Journal of Supercritical Fluids, 119, 9–16. https://doi.org/10.1016/j.supflu.2016.08.014
Garcia, J. A. A., Corrêa, R. C. G., Barros, L., Pereira, C., Abreu, R. M. V., Alves, M. J., & Ferreira, I. C. F. R. (2019). Chemical composition and biological activities of Juçara (Euterpe edulis Martius) fruit by-products, a promising underexploited source of high-added value compounds. Journal of Functional Foods, 55(February), 325–332. https://doi.org/10.1016/j.jff.2019.02.037
Garzón, G. A., Narváez-Cuenca, C.-E., Vincken, J.-P., & Gruppen, H. (2017). Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chemistry, 217, 364–372. https://doi.org/10.1016/j.foodchem.2016.08.107
Gasparotto Junior, A., de Souza, P., & Lívero, F. A. dos R. (2019). Plinia cauliflora (Mart.) Kausel: A comprehensive ethnopharmacological review of a genuinely Brazilian species. Journal of Ethnopharmacology, 245, 112169. https://doi.org/10.1016/j.jep.2019.112169
Gligor, O., Mocan, A., Moldovan, C., Locatelli, M., Crișan, G., & Ferreira, I. C. F. R. (2019). Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends in Food Science & Technology, 88(September 2018), 302–315. https://doi.org/10.1016/j.tifs.2019.03.029
Granato, D., Shahidi, F., Wrolstad, R., Kilmartin, P., Melton, L. D., Hidalgo, F. J., & Finglas, P. (2018). Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chemistry, 264, 471–475. https://doi.org/10.1016/j.foodchem.2018.04.012
Gültekin-Özgüven, M., Berktaş, I., & Özçelik, B. (2016). Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT - Food Science and Technology, 72, 559–565. https://doi.org/10.1016/j.lwt.2016.04.065
Gurak, P. D., De Bona, G. S., Tessaro, I. C., & Marczak, L. D. F. (2014). Jaboticaba Pomace Powder Obtained as a Co-product of Juice Extraction: A Comparative Study of Powder Obtained from Peel and Whole Fruit. Food Research International, 62, 786–792. https://doi.org/10.1016/j.foodres.2014.04.042
Haminiuk, C. W. I., Maciel, G. M., Plata-Oviedo, M. S. V., & Peralta, R. M. (2012). Phenolic compounds in fruits - an overview. International Journal of Food Science & Technology, 47(10), 2023–2044. https://doi.org/10.1111/j.1365-2621.2012.03067.x
Hanula, M., Wyrwisz, J., Moczkowska, M., Horbańczuk, O. K., Pogorzelska-Nowicka, E., & Wierzbicka, A. (2020). Optimization of Microwave and Ultrasound Extraction Methods of Açai Berries in Terms of Highest Content of Phenolic Compounds and Antioxidant Activity. Applied Sciences, 10(23), 8325. https://doi.org/10.3390/app10238325
Hu, S., Kim, B.-Y., & Baik, M.-Y. (2016). Physicochemical properties and antioxidant capacity of raw, roasted and puffed cacao beans. Food Chemistry, 194, 1089–1094. https://doi.org/10.1016/j.foodchem.2015.08.126
Karak, P. (2019). Biological activities of flavonoids: An overview. International Journal of Pharmaceutical Sciences and Research, 10(4), 1567–1574.
Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18, 2328–2375. https://doi.org/10.3390/molecules18022328
Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as Anticancer Agents. Nutrients, 12(2), 457. https://doi.org/10.3390/nu12020457
Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370
Kumari, B., Tiwari, B. K., Hossain, M. B., Brunton, N. P., & Rai, D. K. (2018). Recent Advances on Application of Ultrasound and Pulsed Electric Field Technologies in the Extraction of Bioactives from Agro-Industrial By-products. Food and Bioprocess Technology, 11(2), 223–241. https://doi.org/10.1007/s11947-017-1961-9
Leite-legatti, A. V., Giovana, Â., Romanelli, N., Dragano, V., Castro, A., Gomes, L., & Júnior, M. (2012). Jaboticaba peel : Antioxidant compounds , antiproliferative and antimutagenic activities. Food Research International, 49, 596–603.
Lima, M. C., Paiva de Sousa, C., Fernandez-Prada, C., Harel, J., Dubreuil, J. D., & de Souza, E. L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, 130, 259–270. https://doi.org/10.1016/j.micpath.2019.03.025
Liz, S., Cardoso, A. L., Copetti, C. L. K., Hinnig, P. de F., Vieira, F. G. K., da Silva, E. L., & Di Pietro, P. F. (2020). Açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) juices improved HDL-c levels and antioxidant defense of healthy adults in a 4-week randomized cross-over study. Clinical Nutrition, 39(12), 3629–3636. https://doi.org/10.1016/j.clnu.2020.04.007
Madalão, M. C. M., Lima, E. M. F., Benincá, D. B., Saraiva, S. H., Carvalho, R. V. de, & Silva, P. I. (2021). Extraction of bioactive compounds from juçara pulp (Euterpe edulis M.) is affected by ultrasonic power and temperature. Ciência e Agrotecnologia, 45. https://doi.org/10.1590/1413-7054202145024820
Maleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 299, 125124. https://doi.org/10.1016/j.foodchem.2019.125124
Mariano, E., Gomes, T. F., Lins, S. R. M., Abdalla‐Filho, A. L., Soltangheisi, A., Araújo, M. G. S., & Hampe, A. (2021). LT‐Brazil: A database of leaf traits across biomes and vegetation types in Brazil. Global Ecology and Biogeography, 30(11), 2136–2146. https://doi.org/10.1111/geb.13381
Mayorga-Gross, A. L., Quirós-Guerrero, L. M., Fourny, G., & Vaillant, F. (2016). An untargeted metabolomic assessment of cocoa beans during fermentation. Food Research International, 89, 901–909. https://doi.org/10.1016/j.foodres.2016.04.017
Nadar, S. S., Rao, P., & Rathod, V. K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology : A review. Food Research International, 108(March), 309–330. https://doi.org/10.1016/j.foodres.2018.03.006
Neves, N. A., Stringheta, P. C., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2018). Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn. Food Chemistry, 252, 61–71. https://doi.org/10.1016/j.foodchem.2018.01.078
Neves, N. A., Stringheta, P. C., Silva, I. F. da, García-Romero, E., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2021). Identification and quantification of phenolic composition from different species of Jabuticaba (Plinia spp.) by HPLC-DAD-ESI/MSn. Food Chemistry.
Oliveira, A. C., Miyagawa, L. M., Monteiro, K. M., Dias, A. L. S., Longato, G. B., Spindola, H., & Rogez, H. (2021). Phenolic composition, antiproliferative and antiulcerogenic activities of a polyphenol‐rich purified extract from açai ( Euterpe oleracea ) fruits. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.15332
Pedan, V., Weber, C., Do, T., Fischer, N., Reich, E., & Rohn, S. (2018). HPTLC fingerprint profile analysis of cocoa proanthocyanidins depending on origin and genotype. Food Chemistry, 267, 277–287. https://doi.org/10.1016/j.foodchem.2017.08.109
Pimenta Inada, K. O., Nunes, S., Martínez-Blázquez, J. A., Tomás-Barberán, F. A., Perrone, D., & Monteiro, M. (2020). Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of jabuticaba (Myrciaria jaboticaba) peel and seed. Food Chemistry, 309, 125794. https://doi.org/10.1016/j.foodchem.2019.125794
Plaza, M., Batista, Â. G., Cazarin, C. B. B., Sandahl, M., Turner, C., Östman, E., & Maróstica Júnior, M. R. (2016). Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chemistry, 211, 185–197. https://doi.org/10.1016/j.foodchem.2016.04.142
Pojer, E., Mattivi, F., Johnson, D., & Stockley, C. S. (2013). The Case for Anthocyanin Consumption to Promote Human Health: A Review. Comprehensive Reviews in Food Science and Food Safety, 12(5), 483–508. https://doi.org/10.1111/1541-4337.12024
Pragst, F., Herzler, M., & Erxleben, B.-T. (2004). Systematic toxicological analysis by high-performance liquid chromatography with diode array detection (HPLC-DAD). Clinical Chemistry and Laboratory Medicine (CCLM), 42(11). https://doi.org/10.1515/CCLM.2004.251
Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30(1), 37–44. https://doi.org/10.1016/j.tibtech.2011.06.014
Quatrin, A., Pauletto, R., Maurer, L. H., Minuzzi, N., Nichelle, S. M., Carvalho, J. F. C., & Emanuelli, T. (2019). Characterization and quantification of tannins, flavonols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. Journal of Food Composition and Analysis, 78, 59–74. https://doi.org/10.1016/j.jfca.2019.01.018
Raks, V., Suod, H. Al, & Buszewski, B. (2018). Isolation , Separation , and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques. Chromatographia, 81, 189–202. https://doi.org/10.1007/s10337-017-3405-0
Ramos-Escudero, F., Casimiro-Gonzales, S., Fernández-Prior, Á., Cancino Chávez, K., Gómez-Mendoza, J., Fuente-Carmelino, L. de la, & Muñoz, A. M. (2021). Colour, fatty acids, bioactive compounds, and total antioxidant capacity in commercial cocoa beans (Theobroma cacao L.). LWT, 147, 111629. https://doi.org/10.1016/j.lwt.2021.111629
Rocchetti, G., Blasi, F., Montesano, D., Ghisoni, S., Marcotullio, M. C., Sabatini, S., & Lucini, L. (2019). Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Research International, 115, 319–327. https://doi.org/10.1016/j.foodres.2018.11.046
Rocha, J. C. G., Procópio, F. R., Mendonça, A. C., Vieira, L. M., Perrone, Í. T., Barros, F. A. R., & Stringheta, P. C. (2017). Optimization of ultrasound-assisted extraction of phenolic compounds from jussara (Euterpe edulis M.) and blueberry (Vaccinium myrtillus) fruits. Food Science and Technology, 38(1), 45–53. https://doi.org/10.1590/1678-457x.36316
Santos, D. T., Veggi, P. C., & Meireles, M. A. A. (2010). Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. Journal of Food Engineering, 101(1), 23–31. https://doi.org/10.1016/j.jfoodeng.2010.06.005
Schulz, M., Biluca, F. C., Gonzaga, L. V., Borges, G. S. C., Vitali, L., Micke, G. A., & Fett, R. (2017). Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chemistry, 228, 447–454. https://doi.org/10.1016/j.foodchem.2017.02.038
Schulz, M., Borges, G. S. C., Gonzaga, L. V., Seraglio, S. K. T., Olivo, I. S., Azevedo, M. S., & Fett, R. (2015). Chemical composition, bioactive compounds and antioxidant capacity of juçara fruit (Euterpe edulis Martius) during ripening. Food Research International, 77, 125–131. https://doi.org/10.1016/j.foodres.2015.08.006
Seger, C., Sturm, S., & Stuppner, H. (2013). Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques – state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Natural Product Reports, 30(7), 970. https://doi.org/10.1039/c3np70015a
Silva, N. A. da, Rodrigues, E., Mercadante, A. Z., & de Rosso, V. V. (2014). Phenolic Compounds and Carotenoids from Four Fruits Native from the Brazilian Atlantic Forest. Journal of Agricultural and Food Chemistry, 62(22), 5072–5084. https://doi.org/10.1021/jf501211p
Silva, L., N. O., Castelo‐Branco, V., A. Carvalho, A. G., C. Monteiro, M., Perrone, D., & G. Torres, A. (2017). Ethanol extraction renders a phenolic compounds‐enriched and highly stable jussara fruit ( Euterpe edulis M.) oil. European Journal of Lipid Science and Technology, 119(11), 1700200. https://doi.org/10.1002/ejlt.201700200
Silveira, T. F. F., de Souza, T. C. L., Carvalho, A. V., Ribeiro, A. B., Kuhnle, G. G. C., & Godoy, H. T. (2017). White açaí juice (Euterpe oleracea): Phenolic composition by LC-ESI-MS/MS, antioxidant capacity and inhibition effect on the formation of colorectal cancer related compounds. Journal of Functional Foods, 36, 215–223. https://doi.org/10.1016/j.jff.2017.07.001
Silveira, T. F. F., & Godoy, H. T. (2019). Non-Anthocyanin Phenolic Compounds in Açaí ( E uterpe oleracea Mart.) Juice by Ultrahigh-Performance Liquid Chromatography-Diode Array Detector (UHPLC-DAD): A Multivariate Optimization. Journal of Chromatographic Science, 57(2), 139–148. https://doi.org/10.1093/chromsci/bmy095
Stoev, G., & Stoyanov, A. (2007). Comparison of the reliability of the identification with diode array detector and mass spectrometry. Journal of Chromatography A, 1150(1–2), 302–311. https://doi.org/10.1016/j.chroma.2006.12.026
Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093
Urbańska, B., Derewiaka, D., Lenart, A., & Kowalska, J. (2019). Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. European Food Research and Technology, 245(10), 2101–2112. https://doi.org/10.1007/s00217-019-03333-w
Vega-Arroy, D. J., Ruíz-Espinosa, H., Luna-Guevara, J. J., Luna-Guevara, M. L., Hernández-Carranza, P., Ávila-Sosa, R., & Ochoa-Velasco, C. E. (2017). Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech Journal of Food Sciences, 35(No. 5), 456–465. https://doi.org/10.17221/316/2016-CJFS
Vieira, G. S., Marques, A. S. F., Machado, M. T. C., Silva, V. M., & Hubinger, M. D. (2017). Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI–MS) in jussara (Euterpe edulis) extracts. Journal of Food Science and Technology, 54(7), 2135–2144. https://doi.org/10.1007/s13197-017-2653-1
Viganó, J., de Aguiar, A. C., Veggi, P. C., Sanches, V. L., Rostagno, M. A., & Martínez, J. (2022). Techno-economic evaluation for recovering phenolic compounds from acai (Euterpe oleracea) by-product by pressurized liquid extraction. The Journal of Supercritical Fluids, 179, 105413. https://doi.org/10.1016/j.supflu.2021.105413
Wu, L., Li, L., Chen, S., Wang, L., & Lin, X. (2020). Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology, 247, 117014. https://doi.org/10.1016/j.seppur.2020.117014
Wu, S., Dastmalchi, K., Long, C., & Kennelly, E. (2012). Metabolite profiling of jaboticaba (Myrciaria cauliflora) and other dark-colored fruit juices. Planta Medica, 78(11). https://doi.org/10.1055/s-0032-1320871
Xu, C.-C., Wang, B., Pu, Y.-Q., TO, J.-S., & Zhang, T. (2017). Advances in extraction and analysis of phenolic compounds from plant materials. Chinese Journal of Natural Medicines, 15(10), 721–731. https://doi.org/10.1016/S1875-5364(17)30103-6
Yamaguchi, K. K. de L., Pereira, L. F. R., Lamarão, C. V., Lima, E. S., & da Veiga-Junior, V. F. (2015). Amazon acai: Chemistry and biological activities: A review. Food Chemistry, 179, 137–151. https://doi.org/10.1016/j.foodchem.2015.01.055
Ziauddeen, N., Rosi, A., Del Rio, D., Amoutzopoulos, B., Nicholson, S., Page, P., … Mena, P. (2019). Dietary intake of (poly)phenols in children and adults: cross-sectional analysis of UK National Diet and Nutrition Survey Rolling Programme (2008–2014). European Journal of Nutrition, 58(8), 3183–3198. https://doi.org/10.1007/s00394-018-1862-3
Zubarev, R. A., & Makarov, A. (2013). Orbitrap Mass Spectrometry. Analytical Chemistry, 85(11), 5288–5296. https://doi.org/10.1021/ac4001223
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Nathália de Andrade Neves; Maria Emília Rodrigues Valente; Isadora Ferreira da Silva
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.