Estudios in silico, composición química, actividad antibacteriana y fagocitosis in vitro inducida por el antígeno de Stryphnodendron astringens (Mart.) Coville

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i2.25748

Palabras clave:

Stryphnodendron adstringens; UHPLC-MS; Actividad antimicrobiana; Función lítica; Fagocitosis.

Resumen

Investigamos la composición química de los extractos acuoso e hidroetanólico de Stryphnodendron adstringens evaluando el contenido total de polifenoles y taninos, la actividad antioxidante y los compuestos marcadores a través de UHPLC-MS. Mediante el enfoque in silico se predijeron los parámetros moleculares y farmacocinéticos de las dos sustancias principales encontradas en el extracto, el pirogalol (1) y el ácido clorogénico (2). La actividad antibacteriana se verificó determinando la CIM de los extractos en diferentes cepas bacterianas. Se estudió el diámetro de la zona de inhibición (ZD) de tres extractos diferentes de S. adstringens, aquellos con ZD>10mm procedieron a la determinación de las CIM. La muestra antimicrobiana más activa fue S. adstringens ST3. Los extractos de S. adstringens aquí analizados demostraron no sólo un alto contenido de polifenoles y taninos totales, sino también actividad antioxidante y actividad contra importantes patógenos bacterianos como Streptococcus pneumoniae, Neisseria gonorrhoeae, así como contra bacterias multirresistentes como MRSA (Staphylococcus aureus resistente a la meticilina) y Pseudomonas aeruginosa. Se estudiaron los efectos del extracto de S. adstringens en la fagocitosis y la eliminación intracelular de Candida albicans y Candida kefyr de dos individuos normales. Proponemos que el efecto de S. adstringens sobre los neutrófilos puede estar relacionado con un posible mecanismo de regulación de funciones en estas células.

Citas

Baldivia, D. D., Leite, D. F., Castro, D. T., Campos, J. F., Santos, U. P., Paredes-Gamero, E. J., Carollo, C. A., Silva, D. B., De Picoli Souza, K., & Dos Santos, E. L. (2018). Evaluation of In Vitro Antioxidant and Anticancer Properties of the Aqueous Extract from the Stem Bark of Stryphnodendron adstringens. In International Journal of Molecular Sciences,18(8).

Calixto, J. B. (2019). The role of natural products in modern drug discovery.Calixto, J. B. (2019). The role of natural products in modern drug discovery. Anais Da Academia Brasileira de Ciencias, 91, 1–7.

Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2020). Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Frontiers in Pharmacology, 10.

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717.

Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2.

Dickson, R. A., Houghton, P. J., Hylands, P. J., & Gibbons, S. (2006). Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. and Microglossa pyrifolia Lam. Phytotherapy Research : PTR, 20(1), 41–45.

Dong, W., & Song, Y. (2020). The Significance of Flavonoids in the Process of Biological Nitrogen Fixation. International Journal of Molecular Sciences, 21(16), 5926.

El-Benna, J., Dang, P. M.-C., & Gougerot-Pocidalo, M.-A. (2008). Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Seminars in Immunopathology, 30(3), 279–289.

Felfili, J. M., Nogueira, P. E., Silva Júnior, M. C. da, Marimon, B. S., & Delitti, W. B. C. (2002). Composição florística e fitossociologia do cerrado sentido restrito no município de água boa – MT. Acta Botanica Brasilica, 16(1), 103–112.

Flores, G., Dastmalchi, K., Wu, S.-B., Whalen, K., Dabo, A. J., Reynertson, K. A., Foronjy, R. F., D Armiento, J. M., & Kennelly, E. J. (2013). Phenolic-rich extract from the Costa Rican guava (Psidium friedrichsthalianum) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chemistry, 141(2), 889–895.

Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020b). Technological Application of Tannin-Based Extracts. Molecules (Basel, Switzerland), 25(3), 614.

Ghabraie, M., Vu, K. D., Tata, L., Salmieri, S., & Lacroix, M. (2016). Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT - Food Science and Technology, 66, 332–339.

Huang, Q., Liu, X., Zhao, G., Hu, T., & Wang, Y. (2018). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition (Zhongguo Xu Mu Shou Yi Xue Hui), 4(2), 137–150.

Ishida, K., Rozental, S., de Mello, J. C. P., & Nakamura, C. V. (2009). Activity of tannins from Stryphnodendron adstringens on Cryptococcus neoformans: effects on growth, capsule size and pigmentation. Annals of Clinical Microbiology and Antimicrobials, 8, 29.

Iturriaga, L., Olabarrieta, I., & de Marañón, I. M. (2012). Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. International Journal of Food Microbiology, 158(1), 58–64.

Kolodziej, H. (2011). Antimicrobial, Antiviral and Immunomodulatory Activity Studies of Pelargonium sidoides (EPs(®) 7630) in the Context of Health Promotion. Pharmaceuticals (Basel, Switzerland), 4(10), 1295–1314.

Labro, M. T. (2000). Interference of antibacterial agents with phagocyte functions: immunomodulation or “immuno-fairy tales”? Clinical Microbiology Reviews, 13(4), 615–650.

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26.

Marinho, T. A., Oliveira, M. G., Menezes-Filho, A. C. P., Castro, C. F. S., Oliveira, I. M. M., Borges, L. L., Melo-Reis, P. R., & Silva-Jr, N. J. (2022). Phytochemical characterization, and antioxidant and antibacterial activities of the hydroethanolic extract of anadenanthera peregrina stem bark. Brazilian Journal of Biology, 82, 1–12.

Mellini, M., Di Muzio, E., D’Angelo, F., Baldelli, V., Ferrillo, S., Visca, P., Leoni, L., Polticelli, F., & Rampioni, G. (2019). In silico Selection and Experimental Validation of FDA-Approved Drugs as Anti-quorum Sensing Agents. Frontiers in Microbiology, 10, 2355.

Mohammadzadeh, T., Sadjjadi, S., Habibi, P., & Sarkari, B. (2012). Comparison of Agar Dilution, Broth Dilution, Cylinder Plate and Disk Diffusion Methods for Evaluation of Anti-leishmanial Drugs on Leishmania promastigotes. Iranian Journal of Parasitology, 7(3), 43–47.

Mrityunjaya, M., Pavithra, V., Neelam, R., Janhavi, P., Halami, P. M., & Ravindra, P. V. (2020). Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Frontiers in Immunology, 11.

Nakamura, C. V., Santos, A. O., Vendrametto, M. C., Luize, P. S., Dias Filho, B. P., Cortez, D. A. G., & Ueda-Nakamura, T. (2006). Atividade antileishmania do extrato hidroalcoólico e de frações obtidas de folhas de Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck. Revista Brasileira de Farmacognosia, 16(1), 61–66.

Ostrosky, E. A., Mizumoto, M. K., Lima, M. E. L., Kaneko, T. M., Nishikawa, S. O., & Freitas, B. R. (2008). Métodos para avaliação da atividade antimicrobiana e determinação da Concentração Mínima Inibitória (CMI) de plantas medicinais. Revista Brasileira de Farmacognosia, 18(2), 301–307.

Othman, L., Sleiman, A., & Abdel-Massih, R. M. (2019). Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Frontiers in Microbiology, 10, 911.

Pupo, M. T., Gallo, M. B. C., & Vieira, P. C. (2007). Biologia química: uma estratégia moderna para a pesquisa em produtos naturais. Química Nova, 30(6), 1446–1455.

Sanches, N. R., Cortez, D. A. G., Schiavini, M. S., Nakamura, C. V., & Dias Filho, B. P. (2005). An evaluation of antibacterial activities of Psidium guajava (L.). Brazilian Archives of Biology and Technology, 48(3), 429–436.

Silveira, P. F. da, Bandeira, M. A. M., & Arrais, P. S. D. (2008). Farmacovigilância e reações adversas às plantas medicinais e fitoterápicos: uma realidade. Revista Brasileira de Farmacognosia, 18(4), 618–626.

Teng, T.-S., Ji, A.-L., Ji, X.-Y., & Li, Y.-Z. (2017). Neutrophils and Immunity: From Bactericidal Action to Being Conquered. Journal of Immunology Research, 2017, 9671604.

Vandeputte, D., Kathagen, G., D’hoe, K., Vieira-Silva, S., Valles-Colomer, M., Sabino, J., Wang, J., Tito, R. Y., De Commer, L., Darzi, Y., Vermeire, S., Falony, G., & Raes, J. (2017). Quantitative microbiome profiling links gut community variation to microbial load. Nature, 551(7681), 507–511.

Vendruscolo, G. S., Rates, S. M. K., & Mentz, L. A. (2005). Dados químicos e farmacológicos sobre as plantas utilizadas como medicinais pela comunidade do bairro Ponta Grossa, Porto Alegre, Rio Grande do Sul. Revista Brasileira de Farmacognosia, 15(4), 361–372.

Videla, L. A., Barros, S. B., & Junqueira, V. B. (1990). Lindane-induced liver oxidative stress. Free Radical Biology & Medicine, 9(2), 169–179.

Wang, Y., Branicky, R., Noë, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. The Journal of Cell Biology, 217(6), 1915–1928.

Xu, M., Huang, B., Gao, F., Zhai, C., Yang, Y., Li, L., Wang, W., & Shi, L. (2019). Assesment of Adulterated Traditional Chinese Medicines in China: 2003-2017. Frontiers in Pharmacology, 10.

Zhang, G., & Musgrave, C. B. (2007). Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations. The Journal of Physical Chemistry A, 111(8), 1554–1561.

Descargas

Publicado

27/01/2022

Cómo citar

BUENO, P. I. .; MACHADO, D.; LANCELLOTTI, M.; GONÇALVES, C. P. .; MARCUCCI, M. C. .; SAWAYA, A. C. H. F. .; MELO, A. de . Estudios in silico, composición química, actividad antibacteriana y fagocitosis in vitro inducida por el antígeno de Stryphnodendron astringens (Mart.) Coville. Research, Society and Development, [S. l.], v. 11, n. 2, p. e35911225748, 2022. DOI: 10.33448/rsd-v11i2.25748. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25748. Acesso em: 1 jul. 2024.

Número

Sección

Ciencias de la salud