Técnicas tradicionales y emergentes de eliminación de bario para el tratamiento de agua y aguas residuales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i2.25809

Palabras clave:

Bario; Remoción; Metales pesados; Tratamiento de aguas; Efluentes.

Resumen

El bario en pequeñas concentraciones es nocivo para la salud y el medio ambiente, lo que lo convierte en un desafío para los procesos de tratamiento de aguas y efluentes, debido a su complejidad de eliminación y potencial de contaminación. El objetivo de este trabajo es realizar una revisión bibliográfica que describa las características fisicoquímicas del bario, las tecnologías tradicionales y emergentes utilizadas para su remoción en procesos de tratamiento de aguas y efluentes. Por lo tanto, la metodología utilizada fue una revisión sistemática de la literatura disponible en cuatro bases de datos: Scielo, CAPES, Science Direct y Google Scholar. Entre las técnicas convencionales para el tratamiento de metales pesados ​​destacan la precipitación química, la adsorción, el intercambio iónico, la coagulación, la floculación y la flotación. En cuanto a las tecnologías emergentes está el uso de productos naturales y sintéticos como adsorbentes. Con este trabajo se comprobó la escasez de metodologías para remoción específica de bario y las perspectivas que se abren para este campo de investigación.

Citas

Agencia para Sustancias Tóxicas y el Registro de Enfermedades. (2007). Resumen de Salud Pública Bario. Autor.

Amore, F. (1977). Removal of Water Supply Contaminants - Barium. Technical Letter 21.

Baird, C., & Cann, M. (2011). Química Ambiental (4a ed.). Bookman.

Baltar, C. A. M., Luz, A. B., & Neumann, R. (2003). Caracterização e Beneficiamento da Barita de Miguel Calmon-BA. In: Insumos Minerais para a Perfuração de Poços de Petróleo, 3, 47-61.

CETESB. Ficha de Informação Toxicológica: Bário. (2013). https://cetesb.sp.gov.br/laboratorios/wp-content/uploads/sites/24/2013/11/Bario.pdf

Companhia de Tecnologia de Saneamento Ambiental. (2017). Ficha de informação toxicológica: Bário. Autor.

Coscione, A. R., & Berton, R. S. (2009). Barium extraction potential by mustard, sunflower and castor bean. Scientia Agricola, 66(1), 59-63. https://doi.org/10.1590/S0103-90162009000100008

Di Bernardo, L. D., Botari, A., & Paz, L. P. S. (2005). Uso de modelação matemática para projeto de câmaras mecanizadas de floculação em série em estações de tratamento de água. Engenharia Sanitária Ambiental, 10(1), 82-90. https://doi.org/10.1590/S1413-41522005000100010

EBC. Soluções Sustentáveis para o uso da Água. (2018). https://www.ebc.com.br/especiais-agua/solucoes-hidricas/

ENGENOVO. Flotação - Informações básicas. (2014). http://www.engenovo.com.br/infotec/Art%20Tec--Flotacao-Fundamentos%20Basicos--2014.pdf

Fard, A. K., Mckay, G., Chamoun, R., Rhadfi, T., Preud'Homme, H., & Atieh, M. A. (2017). Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chemical Engineering Journal, 317, 331–342. http://dx.doi.org/10.1016/j.cej.2017.02.090

Fontana, K. B., Chaves, E. S., Kosera, V. S., & Lenzi, G. G. (2018). Barium removal by photocatalytic process: An alternative for water treatment. Journal of Water Process Engineering, 22, 163–171. https://doi.org/10.1016/j.jwpe.2018.01.017

Fontão, N. C., Hackbarth, F. V., Mayer, D. A., Mazur, L. P., Souza, A. A. U., Vilar, V. J. P. & Souza, S. M. A. G. U. (2020). A step forward on mathematical modeling of barium removal from aqueous solutions using seaweeds as natural cation exchangers: Batch and fixed-bed systems. Chemical Engineering Journal, 401, 126019. https://doi.org/10.1016/j.cej.2020.126019

Gervasoni, R., Schultz, N. O., & Melo, C. A. (2018). Comparativo entre métodos apresentados. Tecnologias Potenciais para o Saneamento. Programa Paranaense de Pesquisa em Saneamento Ambiental, 2, 353-363.

Ghaemi, A., Torab-Mostaedi, M., & Ghannadi-Maragheh, M. (2011). Characterizations of strontium (II) and barium (II) adsorption from aqueous solutions using dolomite powder. Nuclear Fuel Cycle Research School, 190, 916-921. 10.1016/j.jhazmat.2011.04.006

International Programmeon Chemical Safety. (1990). Barium. http://www.inchem.org/documents/ehc/ehc/ehc107.htm#SectionNumber:3.1

International Programmeon Chemical Safety. (1991). Barium and barium compounds. http://www.inchem.org/documents/cicads/cicads/cicad33.htm

Jimenez, R. S., Bosco, S. M. D., & Carvalho, W. A. (2004). Remoção de metais pesados de efluentes aquosos pela zeólita natural escolecita – Influência da temperatura e do PH na adsorção em sistemas monoelementares. Química. Nova, 27(5), 734-738. https://doi.org/10.1590/S0100-40422004000500011

Kaveeshwar, A. R., Kumar, P. S., Revellame, E. D., Gang, D. D., Zappi, M. E., & Subramaniam, R. (2018). Adsorption properties and mechanism of barium (II) and strontium (II) removal from fracking wastewater using pecan shell based activated carbon. Journal of Cleaner Production, 193, 1–13. https://doi.org/10.1016/j.jclepro.2018.05.041

Krause, L. T., & Stover, L. E. (1982). Evaluating water treatment techniques for barium removal. Research And Technology Journal Awwa, 478-485.

Kubota, K., Harima, T., & Hayashi, S. (1990). Removal of fine particles from aqueous medium by flotation: Sodium dodecylbenzenesulfonate-barium sulfate system. The Canadian Journal of Chemical Engineering, 68(4), 608-613. https://doi.org/10.1002/cjce.5450680411

Labidi, N. S. (2018). Flotation of barium sulfate contaminants soils. Biodiversity International Journal, 2, 91-93. 10.15406/bij.2018.02.00049

Lima, R. N., & Abreu, F. O. M. S. (2018). Natural products used as coagulants and flocculants for public water supply: A review of benefits and potentialities. Revista Virtual de Quimica, 10(3), 709–735. 10.21577/1984-6835.20180052

Lundh, M., Jonsson, L., & Dahlquist, J. (2002). The Influence of Contact Zone Configuration on the Flow Structure in a Dissolved Air Flotation Pilot Plant. Water Research, 36, 1585-1595. 10.1016/s0043-1354(01)00357-8

Martins, A. L. S. (2009). Remoção de Chumbo e Bário de um efluente aquoso via flotação por ar dissolvido (Dissertação de Mestrado). Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro.

Mota, I. O. (2011). Remoção de Chumbo e bário de um efluente aquoso via eletroflotação e eletrocoagulação (Dissertação de Mestrado). Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro. – RJ.

Nascimento, A. R., Figueredo, G. P., Rodrigues, G., Melo, M. A. F., Souza, M. J. B., & Melo, M. F. (2014). Síntese e caracterização de materiais mesoporosos modificados com níquel para a captura de CO2. Cerâmica 60, 482-489. https://doi.org/10.1590/S0366-69132014000400005

Nogueira, T. A. R., deMelo, W. J., Fonseca, I. M., Marques, M. O., & He, Z. (2010) Barium uptake by maize plants as affected by sewage sludge in a long-term field study. Journal of Hazardous Materials, 181(1-3), 1148-1157. 10.1016/j.jhazmat.2010.05.138

Peana, M., Medici, S., Dadar, M., Zoroddu, M. A., Pelucelli, A., Chasapis, T. C. & Bjørklund, G. (2021). Environmental barium: potential exposure and health‑hazards. Archives of Toxicology, 95, 2605-2612. 10.1007/s00204-021-03049-5

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.

Pinheiro, V. S., Baltar, C. A. M., & Leite, J. Y. P. (2011). Aplicação de flotação por ar dissolvido para tratamento de águas duras da região Seridó/RN. In XXIV ENTMME.

Portaria n. 888, de 04 de maio de 2021. (2021). Altera o Anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017, para dispor sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Brasília, DF.

Queiroz, N. R., Valenzuela, J., Marne, R., & Silva, L. B. D. (2009). Sistema de filtração. 2009. https://tratamentodeagua.com.br/artigo/sistemas-de-filtracao/

Resolução n. 357, 17 de março de 2005. (2005). Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Brasília, DF.

Resolução n. 396, 03 de abril de 2008. (2008). Dispõe sobre a classificação e diretrizes ambientais para o enquadramento das águas subterrâneas e dá outras providências. Brasília, DF.

Resolução n. 430, de 13 de maio de 2011. (2011). Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA. Brasília, DF.

Ribeiro, E. V., Magalhães, A. P., Jr., Horn, A. H., & Trindade, W. M. (2012). Metais pesados e qualidade da água do rio São Francisco no segmento entre Três Marias e Pirapora - MG: Índice de Contaminação. Geonomos, 20(1), 49-63.

Ronquim, F. M., Cotrim, M. E. B., Guilhen, S. N., Bernardo, A., & Seckler, M. M. (2018). Improved barium removal and supersaturation depletion in wastewater by precipitation with excess sulfate. Journal of Water Process Engineering, 23, 265–276. https://doi.org/10.1016/j.jwpe.2018.04.007

Ross, B. Z. L., Possetti, G. R. C. (2018). Tecnologias potenciais para o saneamento: remoção de metais de águas de abastecimento público. Curitiba: Sanepar.

Santos, F.S., Alsina, O. L. S., Lima, A. S., Cruz, W. R. S., & Mendonça, L. R. (2016, outubro). Adsorção de Bário (II) por casca de laranja oriundo da indústria de suco. In Anais 18ª Semana de Pesquisa da Universidade Tiradentes, Aracaju, SE.

Santos, V. R. S., Botari, J. C., & Botari, A. (2014). Análise e modelação matemática do recrescimento de flocos em água com turbidez elevada. In XIV Safety, Health and Environment Word Congress, Cubatão, SP.

Schimidt, M. D., Botari, A., Vanalli, L., Kamitani, M. K., & Botari, J. C. (2017, julho). Modelação matemática de ressalto hidráulico em estação de tratamento de água na verificação das condições de mistura rápida. In XVII Safety, Health and Environment World Congress, Vila Real, PORTUGAL.

Skoog, D. A., Holler, F. J., & Crouch, S. R. (2005). Fundamentos da química analítica. (8a ed.). Editora Thomson.

Tavares, T., Bertolo, R., Fiúme, B., Crespi, A., Martins, V., & Hirata, R. (2015). Hydrochemical investigation of barium in the public water supply wells of Sao Paulo state, southern Brazil. Environmental Earth Sciences, 74(9), 6599–6612. 10.1007/s12665-015-4661-7

Vaitsman, D. S., Afonso, J. C., & Dutra, P. B. (2001). Para que Servem os Elementos Químicos. Interciência.

Verbruggen, E. M. J., Smit, C. E., & Van Vlaardingen, P. L. A. (2020). Environmental quality standards for barium in surface water. National Institute for Public Health and the Environment, RIVM, 1-111.

World Health Organization. (2016). Barium in Drinking-water. Autor.

Publicado

01/02/2022

Cómo citar

GRAÇA, J. K. .; HATAISHI, L. A.; GRAÇA, J. K. .; TESSAROTTO, A.; BATISTELA, V. R. . Técnicas tradicionales y emergentes de eliminación de bario para el tratamiento de agua y aguas residuales. Research, Society and Development, [S. l.], v. 11, n. 2, p. e45811225809, 2022. DOI: 10.33448/rsd-v11i2.25809. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25809. Acesso em: 22 dic. 2024.

Número

Sección

Revisiones