Análisis especial del rendimiento de la soja en la mesorregión occidental de Paraná utilizando variable agrometeorológicas
DOI:
https://doi.org/10.33448/rsd-v11i3.25962Palabras clave:
Autocorrelación espacial; Correlación espacial; Análisis espacial de datos.Resumen
Esta investigación tuvo como objetivo analizar la autocorrelación espacial del rendimiento de la soya y su correlación espacial bivariado con las variables agrometeorológicas como lluvia, temperatura media y radiación solar global media en las cosechas 2014/2015, 2015/2016 y 2016/2017 en la mesorregión Oeste de Paraná – Brasil. Para lograr este objetivo, se utilizaron técnicas de estadística espacial de áreas que, por medio de los índices de autocorrelación y la correlación espacial, buscando identificar patrones de asociación entre el rendimiento de la soja y las variables agrometeorológicas. Esta investigación se justifica porque, además de que el cultivo de la soya es la principal fuente de proteína alimentaria y aceite vegetal en el mundo, las variables agrometeorológicas son los factores que más influyen en él. Así, también se destaca la mesorregión occidental de Paraná con los valores más altos de producción en el estado. Por ello, es importante monitorear su desarrollo mediante el análisis espacial para obtener informaciones que sirvan de apoyo a la toma de decisiones. Los índices de Moran globales y locales mostraron que la productividad de la soya está autocorrelacionada en los municipios del oeste de Paraná, identificando conglomerados al oeste y al este de la mesorregión. La importancia de los índices de correlación espacial bivariados confirmó la influencia de la lluvia, la temperatura media y la radiación solar global media en el rendimiento de la soya.
Citas
Almeida, E. S. (2012). Econometria Espacial Aplicada. Alínea.
Anselin, L. (1995). Local indicators of spatial association–LISA. Geographical Analysis, 27(2), 93-115. doi: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin, L. (2003). GeoDa 1.4.6 User’s Guide. University of Illinois.
Anselin, L.; Le Gallo, J.; Jayet, H. (2008). Spatial panel econometrics. In: The econometrics of panel data. Springer, 625-660.
Anselin, L.; Syabri, I.; Kho, Y. (2018). GeoDa Version 1.12. https://geodacenter.github.io-
Araújo, E. C. de; Uribe-Opazo, M. A.; Johann, J. A. (2014). Modelo de regressão espacial para estimativa da produtividade da soja associada a variáveis agrometeorológicas na região oeste do estado do Paraná. Engenharia Agrícola, 34, (2), 286-299. doi:https://doi.org/10.1590/S0100-69162014000200010.
Araujo, M. A.; Souza, J. L. M. de; Tsukahara, R. Y. (2011). Modelos agro-meteorológicos na estimativa da produtividade da cultura da soja na região de Ponta Grossa, Estado do Paraná. Acta Scientiarum. Agronomy, 33(1), 23-31. doi: 10.4025/actasciagron.v33i1.5062.
Barboza, E.N.; Caiana, C.R.A.; Neto, F.C.B. (2020). Rainfall analysis in the Central-South Region of Ceará: A study of the period (1980-2009). Research, Society and Development, 9(6), e18963304. doi: http://dx.doi.org/10.33448/rsd-v9i6.3304.
Braga, G. B.; Marques, M. A. F.; Braga, B. B. (2016). Um diagnóstico da distribuição espacial da atenção primária à saúde no sudeste brasileiro. Journal of Health Sciences, 18(1), 37-47. doi:10.17921/2447-8938.2016v18n1p41-51.
Câmara, G.; Carvalho, M. S.; Cruz, O. G.; Correa, V. (2004). Análise espacial de áreas. Análise espacial de dados geográficos. Embrapa, 157-182.
Campos, R. B. A.; Chagas, A. L. S. (2017). Identificação e caracterização das subcentralidades de emprego no município de São Paulo. Working Paper Series, (33), 1-20. https://ideas.repec.org/p/spa/wpaper/2017wpecon33.html.
Chan-Tack, A.M. (2014). The Case for Spatially-Sensitive Data: How Data Structures Affect Spatial Measurement and Substantive Theory. Historical Social Research, 39(2), 315-346. https://www.ssoar.info/ssoar/handle/document/38487.
Cargnelutti Filho, A.; Matzenauer, R.; Maluf, J. R. T.; Radin, B. (2009). Variabilidade temporal e espacial da precisão das estimativas de elementos meteorológicos no Rio Grande do Sul. Ciência Rural, 39 (4), 962-970. https://www.redalyc.org/pdf/331/33115802039.pdf.
Conab - Companhia Nacional de Abastecimento. (2019). Acompanhamento da safra brasileira. Soja em números, safra 2017/2018. https://www.conab.gov.br/info-agro/safras.
Conab - Companhia Nacional de Abastecimento. (2014). Boletim de monitoramento agrícola. Cultivos de verão – Safra 2014/2015. 3 (20). Retrieved October 9, 2021, from https://www.conab.gov.br/info-agro/safras/graos/monitoramento-agricola.
Conab - Companhia Nacional de Abastecimento. (2015a). Boletim de monitoramento agrícola. Cultivos de verão – Safra 2014/2015. 4 (1). https://www.conab.gov.br/info-agro/safras/graos/monitoramento-agricola.
Conab - Companhia Nacional de Abastecimento. (2015b). Boletim de monitoramento agrícola. Cultivos de verão – Safra 2014/2015. 4 (2). https://www.conab.gov.br/info-agro/safras/graos/monitoramento-agricola.
Cutts, A., Grasen, A. (2018). Learn QGIS: Your step-by-step guide to the fundamental of QGIS 3.4. Packt Publishing, 1-272.
Dalposso, G. H.; Uribe-Opazo, M. A.; De Bastiani, F. (2021). Spatial-temporal analysis of soybean productivity Using Geostatistical Methods. Journal of Agricultural Studies 9(2), 283-303. https://econpapers.repec.org/article/mthjas888/v_3a9_3ay_3a2021_3ai_3a2_3ap_3a283-303.htm.
Ecmwf - European Centre for Medium-Range Weather Forecasts. (2018). ECMWF 10-daily data. 2018. https://www.ecmwf.int/en/forecasts/datasets/.
Embrapa – Empresa Brasileira de Pesquisa Agropecuária. (2019). Eventos climáticos adversos e seus impactos para as culturas de soja, milho e trigo no Brasil. Londrina: Embrapa Soja, 48 p.
Embrapa – Empresa Brasileira De Pesquisa Agropecuária. (2013a). Sistema brasileiro de classificação de solos. 3ª Ed. Centro Nacional de Pesquisa de Solos, 1- 412.
Embrapa - Empresa Brasileira De Pesquisa Agropecuária. (2013b). Tecnologias de produção de soja - Região Central do Brasil - 2014. Embrapa Soja.
Ferrante, A. & Mariani, L. (2018). Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae, 4, (3), 1-21. doi: https://doi.org/10.3390/horticulturae4030021.
Francisco, H.R.; Coldebella, A.; Corrêia, A.F.; Feiden, A. S. (2020) Spatial analysis of point events to estimate the productive potential of the Nile tilapia (Oreochromis niloticus). Research, Society and Development, 9 (9), e855998038. doi: http://dx.doi.org/10.33448/rsd-v9i9.8038.
Friche, A. A. de L.; Calaffa, W. T.; César, C. C.; Goulart, L. M. de F.; Almeida, M. C. de M. (2006). Indicadores de saúde materno infantil em Belo Horizonte, Minas Gerais, Brasil, 2001: Análise dos diferenciais intra-urbanos. Cadernos de Saúde Pública, 22(9), 1955-1965. doi: https://doi.org/10.1590/S0102-311X2006000900027.
Galeano, E. A. V.; Ferrão, R. G.; Souza, R. C.; Tanques, R. C. (2019). Mudança na Distribuição Espacial da Produtividade da Cafeicultura no Espírito Santo nos Anos 2011-2016. Multi-Science Research (MSR), 2, (1), 88-112. https://biblioteca.incaper.es.gov.br/digital/bitstream/123456789/3827/1/distribuicao-espacial-galeano.pdf.
Grzegozewski, D. M.; Uribe-Opazo, M. A.; Johann, J. A.; Guedes, L. P. C. (2017). Spatial correlation of soybean productivity, enhanced vegetation index (EVI) and agrometeorological variables. Engenharia Agrícola, 37(3), 541-555. doi: https://doi.org/10.1590/1809-4430-eng.agric.v37n3p541-555/2017
Ibge - Instituto Brasileiro de Geografia e Estatística (2016). Produção Agrícola Municipal. Culturas Temporárias Permanentes. from https://biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_2016_v43_br.pdf
Ipardes-Instituto Paranaense de Desenvolvimento Econômico e Social. (2018). Perfil da região geográfica Oeste Paranaense. from http://www.ipardes.gov.br/perfil_municipal/MontaPerfil. php?codlocal=706&btOk=ok.
Koeppen, W. (1948). Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Económica.
Leite, s. D. (2016). Análise da distribuição espacial da pobreza na região norte do brasil. Revista economia e desenvolvimento, 15 (2), 215-231. doi:https://doi.org/10.22478/ufpb.1517-9354.2016v15n2.36083.
Lopes, P. F.; Chain, C. P.; Menezes, T. P. de; Prado, J. W. do; Carvalho, F. de M. (2017). Gestão de riscos e dependência espacial em seguros agrícolas: uma análise da produtividade da soja. Interciência, 42(8), 503-508. https://www.redalyc.org/journal/339/33952871004/html/.
Qgis Development Team. (2018). QGIS Geographic Information System. Open source geospatial foundation project.
R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Richetti, J.; Johann, J. A.; Uribe-Opazo, M. A. (2021). Crop modeling with less data: The FAO model for soybean yield estimation. Engenharia. Agrícola, 41 (2), 196-203. doi: https://doi.org/10.1590/1809-4430-Eng.Agric.v41n2p196-203/2021
Santos, A. de P.; Rodrigues, D. D.; Santos, N. T.; Gripp Junior, J. (2016). Avaliação da acurácia posicional em dados espaciais utilizando técnicas de estatística espacial: proposta de método e exemplo utilizando a norma brasileira. Boletim de Ciências Geodésicas, 22 (4), 630-650. https://revistas.ufpr.br/bcg/article/view/49633.
Seab - Secretaria Da Agricultura e Abastecimento. (2016). Boletins Informativos -Colheita de soja na reta final. Departamento de Economia Rural (DERAL). http://www.agricultura.pr.gov.br/sites/default/arquivos_restritos/files/qas/4912/soja_29_mar_2016.pdf.
Seab-Secretaria Da Agricultura e Abastecimento. (2017). Boletins Informativos – Produtividade recorde. Departamento de Economia Rural (DERAL). http://www.agricultura.pr.gov.br/sites/default/arquivos_restritos/files/qas/5709/soja_28_julho_2017.pdf.
Seab - Secretaria da Agricultura e Abastecimento. (2018). Produção agrícola por município. Departamento de Economia Rural (DERAL). http://www.agricultura.pr.gov.br/modules/conteudo.
Seffrin, R. (2017). Análise exploratória de dados espaciais aplicada a produtividade de milho no estado do Paraná. 97f. Dissertação (Mestrado em Tecnologias Computacionais para o Agronegócio) - Universidade Tecnológica Federal do Paraná, Medianeira.
Simões, R.; Guimarães, C.; Godoy, N.; Velloso, T.; Araújo, T.; Galinari, R.; Chein, F. (2016). Rede urbana da oferta de serviços de saúde: uma análise de clusters espaciais para Minas Gerais. Anais, 1-27.
Silva, E.M.; Gasparin, P.P.; Paludo, A.; Becker, W.R.; Guedes, L.P.C.; Johann, J.A. (2021). Soybean productivity and agrometeorological variables assessed from the perspective of Spatial and Circular Statistics. Journal of Agricultural Studies, 9 (3), 303-325. https://econpapers.repec.org/article/mthjas888/v_3a9_3ay_3a2021_3ai_3a3_3ap_3a303-325.htm
Silva, V.A.; Ribeiro, L.C.S.; Esperidião, F. (2020). Municipal development and infrastructure index and its relationship with child mortality in brazilian municipalities. Research, Society and Development, 9 (6), e169963491, 2020. doi: http://dx.doi.org/10.33448/rsd-v9i6.3491
Vidigal, V. G.; Vidigal, C. B. R.; Parré, J. L. (2018). Distribuição espacial da produtividade da soja no Rio Grande do Sul: um estudo exploratório. Acta Scientiarum: Human & Social Sciences, 40 (2), 1-9. doi: https://doi.org/10.4025/actascihumansoc.v40i2.33652
Zanão Júnior, L. A.; Caramori, P. H.; Faria, R. T. de. (2017). Produtividade da soja no entorno do reservatório de Itaipu. Iapar.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Caroline Cristina Engel Gabriel; Miguel Angel Uribe Opazo; Gustavo Henrique Dalposso; Elizabeth Giron Cima
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.