Efecto del plasma no térmico sobre los nutrientes de alimentos y materias primas a base de cereales

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i3.26261

Palabras clave:

Plasma frío; Modificaciones químicas; Especies reactivas; Tecnología ecológica; Modificación física.

Resumen

El plasma no térmico (PNT) es una tecnología emergente que no genera residuos en el medio ambiente. Inicialmente, el PNT fue aplicada en procesos de esterilización de superficies y descontaminación de alimentos, no obstante, los estudios han mostrados resultados prometedores en la modificación de las características de las materias primas alimentarias mejorando sus propiedades fisicoquímicas y tecnológicas. En esta revisión se presentaron los diferentes tipos de PNT, así como su aplicación en macronutrientes, como carbohidratos, proteínas y lípidos, y en materias primas, como harina de trigo y arroz, para modificar sus características fisicoquímicas. El PNT promueve modificaciones como la oxidación de carbohidratos, lípidos y proteínas, hidrólisis de enlaces químicos, y la reducción del pH. Estas modificaciones sucedieron sin el uso de agentes químicos, siendo prometedoras para su uso en la industria alimentaria. Sin embargo, las modificaciones dependen del tipo de PNT, el tipo de gas utilizado y la complejidad de la composición de la materia prima. Por tanto, el mecanismo de acción del plasma, los aspectos regulatorios, el escalado y la aceptación del consumidor son los desafíos que se tienen para la aplicación industrial del PNT.

Citas

Akira, S., Yukihiro, N., Toshio, A. (1996). Quality improved method of flour (Patent No. JP2516356B2). https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19960724&DB=&locale=&CC=JP&NR=2516356B2&KC=B2&ND=1

Amorim, J., Oliveira, C., Souza-Corrêa, J. A., Ridenti, M. A. (2013). Treatment of sugarcane bagasse lignin employing atmospheric pressure microplasma jet in argon. Plasma Processes and Polymers, 10(8), 670–678. https://doi.org/10.1002/ppap.201200158

Attia, H., Elleuch, M., Besbes, S., Blecker, C., Bedigian, D., Roiseux, O. (2010). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421. https://doi.org/10.1016/j.foodchem.2010.06.077

Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., Fisk, I. D. (2016). Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202, 247–253. https://doi.org/10.1016/j.foodchem.2016.01.113

Banura, S., Thirumdas, R., Kaur, A., Deshmukh, R. R., Annapure, U. S. (2017). Modification of starch using low pressure radio frequency air plasma. LWT - Food Science and Technology, 89, 719–724. https://doi.org/10.1016/j.lwt.2017.11.056

Bárdos, L., Baránková, H. (2010). Cold atmospheric plasma: Sources, processes, and applications. Thin Solid Films, 518(23), 6705–6713. https://doi.org/10.1016/j.tsf.2010.07.044

Barra, B. N., Santos, S. F., Bergo, P. V. A., Alves, C., Ghavami, K., Savastano, H. (2015). Residual sisal fibers treated by methane cold plasma discharge for potential application in cement based material. Industrial Crops and Products, 77, 691–702. https://doi.org/10.1016/j.indcrop.2015.07.052

Bauer, A., Ni, Y., S.Bauer, Paulsen, P., Modic, M., J.L.Walsh, Smulders, F. J. M. (2017). The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Science, 128, 77–87. https://doi.org/10.1016/j.meatsci.2017.02.003

Bermudez-Aguirre, D. (2020). Advances in cold plasma applications for food safety and preservation. Oxford: Elsevier.

Bie, P., Pu, H., Zhang, B., Su, J., Chen, L., Li, X. (2016). Structural characteristics and rheological properties of plasma-treated starch. Innovative Food Science and Emerging Technologies, 34, 196–204. https://doi.org/10.1016/j.ifset.2015.11.019

Bock, J. E., Damodaran, S. (2013). Food Hydrocolloids Bran-induced changes in water structure and gluten conformation in model gluten dough studied by Fourier transform infrared spectroscopy. Food Hydrocolloids, 31(2), 146–155. https://doi.org/10.1016/j.foodhyd.2012.10.014

Brennan, J. G. (2006). Food Processing Handbook. Wiley‐VCH Verlag GmbH & Co.

Bußler, S., Rumpold, B. A., Fröhling, A., Jander, E., Rawel, H. M., Schlüter, O. K. (2016). Cold atmospheric pressure plasma processing of insect flour from Tenebrio molitor: Impact on microbial load and quality attributes in comparison to dry heat treatment. Innovative Food Science and Emerging Technologies, 36, 277–286. https://doi.org/10.1016/j.ifset.2016.07.002

Bußler, S., Steins, V., Ehlbeck, J., Schlüter, O. (2015). Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum “Salamanca.” Journal of Food Engineering, 167, 166–174. https://doi.org/10.1016/j.jfoodeng.2015.05.036

Cauvain, S. P. (2015). Bread: Breadmaking Processes. In Encyclopedia of Food and Health (3rd ed.). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00087-8

Chaiwat, W., Wongsagonsup, R., Tangpanichyanon, N., Jariyaporn, T., Deeyai, P., Suphantharika, M., Fuongfuchat, A., Nisoa, M., Dangtip, S. (2016). Argon Plasma Treatment of Tapioca Starch Using a Semi-continuous Downer Reactor. Food and Bioprocess Technology, 9(7), 1125–1134. https://doi.org/10.1007/s11947-016-1701-6

Changyong, S., Lili, Z., Yan, L., Fengchen, L., Lijing, Z., Xiaoming, Z., Wei, Z., Chao, L., Long, S., Xiyan, S., Xin, T., Baoyou, Z., Xiaodong, Y., Xiaoling, C., Liguo, F., Mingxia, D. (2019). A kind of rice breeding method of Microwave plasma treatment. 3–8.

Chaple, S., Sarangapani, C., Jones, J., Carey, E., Causeret, L., Genson, A., Duffy, B., Bourke, P. (2020). Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innovative Food Science & Emerging Technologies, 102529. https://doi.org/10.1016/j.ifset.2020.102529

Chiang, S. H., Chen, C. S., Chang, C. Y. (2006). Effect of wheat flour protein compositions on the quality of deep-fried gluten balls. Food Chemistry, 97(4), 666–673. https://doi.org/10.1016/j.foodchem.2005.04.030

Chizoba Ekezie, F. G., Sun, D. W., Cheng, J. H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science and Technology, 69, 46–58. https://doi.org/10.1016/j.tifs.2017.08.007

Chizoba Ekezie, F. G. C., Cheng, J. H., Sun, D. W. (2019). Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn (Litopenaeus vannamei). Food Chemistry, 276 (September 2018), 147–156. https://doi.org/10.1016/j.foodchem.2018.09.113

Cubas, A. L. V., Machado, M. M., Moecke, E. H. S., Andrade, P. R. (2006). Aperfeiçoamento induzido em reator de plasma descarga corona (Patent No. BR2020140226775U2).https://gru.inpi.gov.br/pePI/servlet/PatenteServletController?Action=detail&CodPedido=993130&SearchParameter=REATOR DE PLASMA DESCARGA CORONA&Resumo=&Titulo=

Cui, H., Wu, J., Li, C., Lin, L. (2017). Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist. Journal of Food Safety, 37(2), 1–10. https://doi.org/10.1111/jfs.12316

Cullen, P. J., Milosavljevi, V., Lalor, J., Scally, L., Boehm, D., Bourke, P., Keener, K., Cullen, P. J., Bourke, P., Lalor, J., Boehm, D., Milosavljević, V., Scally, L., Boehm, D., Milosavljević, V., Bourke, P., Keener, K. (2017). Translation of plasma technology from the lab to the food industry. Plasma Processes and Polymers, 15(2), 1700085. https://doi.org/10.1002/ppap.201700085

Damodaran, S., Parkin, K. L., Fennema, O. R. (2007). Fennema’s Food Chemistry (4th ed.). CRC Press.

Demirci, A., Feng, H., Krishnamurthy, K. (2020). Food Safety Engineering (A. Demirci, H. Feng, K. Krishnamurthy (Eds.)). Springer.

Dhingra, D., Michael, M., Rajput, H., Patil, R. T. (2012). Dietary fibre in foods: A review. Journal of Food Science and Technology, 49(3), 255–266. https://doi.org/10.1007/s13197-011-0365-5

Dobrin, D., Magureanu, M., Mandache, N. B., Lonita, M. D. (2015). The effect of non-thermal plasma treatment on wheat germination and early growth. Innovative Food Science and Emerging Technologies, 29, 255–260. https://doi.org/10.1016/j.ifset.2015.02.006

Dong, S., Gao, A., Zhao, Y., Li, Y. tong, Chen, Y. (2017). Characterization of physicochemical and structural properties of atmospheric cold plasma (ACP) modified zein. Food and Bioproducts Processing, 106, 65–74. https://doi.org/10.1016/j.fbp.2017.05.011

Esteghlal, S., Gahruie, H. H., Niakousari, M., Barba, F. J., Bekhit, A. E., Mallikarjunan, K., Roohinejad, S. (2019). Bridging the Knowledge Gap for the Impact of Non-Thermal Processing on Proteins and Amino Acids. Foods, 8(262), 1–22.

Fazeli, M., Florez, J. P., Simão, R. A. (2019). Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Composites Part B: Engineering, 163, 207–216. https://doi.org/10.1016/j.compositesb.2018.11.048

Fridman, A., Chirokov, A., Gutsol, A. (2005). Non-thermal atmospheric pressure. Journal of physics d: applied physics, 38(2005), R1–R24. https://doi.org/10.1088/0022-3727/38/2/R01

Fridman, G., Brooks, A. D., Balasubramanian, M., Fridman, A., Gutsol, A., Vasilets, V. N., Ayan, H., Friedman, G. (2007). Comparison of Direct and Indirect Effects of Plasma on Bacteria. 370–375. https://doi.org/10.1002/ppap.200600217

Fuller, S., Beck, E., Salman, H., Tapsell, L. (2016). New Horizons for the Study of Dietary Fiber and Health: A Review. Plant Foods for Human Nutrition, 71(1), 1–12. https://doi.org/10.1007/s11130-016-0529-6

Gao, S., Liu, H., Sun, L., Cao, J., Yang, J., Lu, M., Wang, M. (2021). Food Hydrocolloids Rheological, thermal and in vitro digestibility properties on complex of plasma modified Tartary buckwheat starches with quercetin. Food Hydrocolloids, 110, 106209. https://doi.org/10.1016/j.foodhyd.2020.106209

Gao, S., Liu, H., Sun, L., Liu, N., Wang, J., Huang, Y., Wang, F., Cao, J., Fan, R., Zhang, X., Wang, M. (2019). The effects of dielectric barrier discharge plasma on physicochemical and digestion properties of starch. International Journal of Biological Macromolecules, 138, 819–830. https://doi.org/10.1016/j.ijbiomac.2019.07.147

Gavahian, M., Chu, Y. H., Mousavi Khaneghah, A., Barba, F. J., Misra, N. N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science and Technology, 77(April), 32–41. https://doi.org/10.1016/j.tifs.2018.04.009

Han, Y., Cheng, J. H., Sun, D. W. (2019). Activities and conformation changes of food enzymes induced by cold plasma: A review. Critical Reviews in Food Science and Nutrition, 59(5), 794–811. https://doi.org/10.1080/10408398.2018.1555131

Hanliang, S. (2017). Treatment process of plant seeds through cold plasma treatment (Patent No. CN106612743A). https://patentimages.storage.googleapis.com/c6/5f/f4/9d05a391f2675b/CN106612743A.pdf

Hernandez-Perez, P., Flores-Silva, P. C., Velazquez, G., Hern, E., Mendez-Montealvo, G., Sifuentes-Nieves, I. (2021). Rheological performance of film-forming solutions made from plasma-modified starches with different amylose / amylopectin content. Carbohydrate Polymers, 255, 117349. https://doi.org/10.1016/j.carbpol.2020.117349

Huber, K. C., BeMiller, J. N. (2009). Chemistry and properties. In Starches (1st Editio, p. 60). CRC Press.

Jiangang, L., Qilai, X., Yuanhua, D., Ling, L., Renhong, Y., Hongxi, Y., Hanliang, S. (2015). Cold-plasma seed treatment method capable of promoting germination of seeds of grain and oil crops and increasing yield of grain and oil crops (Patent No. CN104782266A). https://patentimages.storage.googleapis.com/79/f9/e5/fd63c044d9d608/CN104782266A.pdf

Keener, K., Cullen, P. J., Ziuzina, D., Bourke, P., Boehm, D. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(6), 615–626. https://doi.org/10.1016/j.tibtech.2017.11.001

Kim, H. S., Min, S. C. (2017). Effects of microwave-discharged cold plasma on synthesis and characteristics of citrate derivatives of corn starch granules. Food Science and Biotechnology, 26(3), 697–706. https://doi.org/10.1007/s10068-017-0110-6

Clerici, M. T. P. S., Lambert, C. S., Chang, Y., K. (2009). Processo de modulação das propriedades de amido usando plasma frio (Patent No. BRPI0903002-A2). https://patentes.inova.unicamp.br/item/289_plasma-frio/

Lakatos, E. M; & Marconi, M. A. (2010). Fundamentos de Metodologia Científica. ATLAS EDITORA.

Larsson, K., Sato, K., Quinn, P., Tiberg, F. (2006). Lipids: Structure, Physical Properties and Functionality. Woodhead Publishing Limited.

Lee, N. Y., Koo, J. G. (2019). Effects of high hydrostatic pressure on quality changes of blends with low-protein wheat and oat flour and derivative foods. Food Chemistry, 271, 685–690. https://doi.org/10.1016/j.foodchem.2018.07.171

Li, S., Zhang, R., Lei, D., Huang, Y., Cheng, S., Zhu, Z. (2021). Trends in Food Science & Technology Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends in Food Science & Technology, 109(December 2020), 1–15. https://doi.org/10.1016/j.tifs.2021.01.017

Ling, Z., Ying, T., Min, D., Changfeng, D., Xingxiang, W., Hanliang, S. (2018). Application of cold plasma seed treatment methods. (Patent No. CN108650930A). https://patentimages.storage.googleapis.com/cf/01/3e/c1f23650a2cd18/CN108650930A.pdf

Lorient, D., Cheftel, J. C. Cuq, J. L. (1989). Proteins alimentarias: bioquímica, propiedadesfuncionales, valor nutritivo, modificacionesquímicas. Acribia.

Loureiro, J., Amorim, J. (2016). Kinetics and Spectroscopy of Low Temperature Plasmas. Springer. https://doi.org/10.1007/978-3-319-09253-9

Macedo, M. J. P., Silva, G. S., Feitor, M. C., Costa, T. H. C., Ito, E. N., Melo, J. D. D. (2020). Surface modification of kapok fibers by cold plasma surface treatment. Journal of Materials Research and Technology, 9(2), 2467–2476. https://doi.org/10.1016/j.jmrt.2019.12.077

Maniglia, B. C., Castanha, N., Rojas, M. L., Augusto, P. E. D. (2021). Emerging technologies to enhance starch performance. Current Opinion in Food Science, 37, 26–36. https://doi.org/10.1016/j.cofs.2020.09.003

Meinlschmidt, P., Ueberham, E., Lehmann, J., Reineke, K., Schlüter, O., Schweiggert-Weisz, U., Eisner, P. (2016). The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innovative Food Science and Emerging Technologies, 38, 374–383. https://doi.org/10.1016/j.ifset.2016.06.007

Menkovska, M., Mangova, M., Dimitrov, K. (2014). Effect of cold plasma on wheat flour and bread making quality. Macedonian Journal of Animal Science, 4(1), 27–30.

Misra, N. N., Yong, H. I., Phalak, R., Jo, C. (2018). Atmospheric pressure cold plasma improves viscosifying and emulsion stabilizing properties of xanthan gum. Food Hydrocolloids, 82, 29–33. https://doi.org/10.1016/j.foodhyd.2018.03.031

Misra, N. N., Jo, C. (2017). Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science and Technology, 64, 74–86. https://doi.org/10.1016/j.tifs.2017.04.005

Misra, N. N., Kaur, S., Tiwari, B. K., Kaur, A., Singh, N., Cullen, P. J. (2015). Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44, 115–121. https://doi.org/10.1016/j.foodhyd.2014.08.019

Misra, N. N., Pankaj, S. K., Segat, A., Ishikawa, K. (2016b). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39–47. https://doi.org/10.1016/j.tifs.2016.07.001

Misra, N. N., Schlüter, O., Cullen, P. (2016a). Cold Plasma in Food and Agriculture: Fundamentals and Applications. Academic Press. https://doi.org/10.1016/b978-0-12-801365-6.09991-1

Mollakhalili-Meybodi, N., Yousefi, M., Nematollahi, A., Khorshidian, N. (2021). Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. European Food Research and Technology, 247(7), 1579–1594. https://doi.org/10.1007/s00217-021-03750-w

Muhammad, A. I., Xiang, Q., Liao, X., Liu, D., Ding, T. (2018). Understanding the Impact of Nonthermal Plasma on Food Constituents and Microstructure—A Review. Food and Bioprocess Technology, 11(3), 463–486. https://doi.org/10.1007/s11947-017-2042-9

Okyere, A. Y., Bertoft, E., Annor, G. A. (2019). Modification of cereal and tuber waxy starches with radio frequency cold plasma and its effects on waxy starch properties. Carbohydrate Polymers, 223(April), 115075. https://doi.org/10.1016/j.carbpol.2019.115075

Osborne, T. B., Voorhees, C. L. (1894). Proteins of the Wheat Kernel. Journal of the American Chemical Society, 16, 524–535.

Pal, P., Kaur, P., Singh, N., Kaur, A. P., Misra, N. N., Tiwari, B. K., Cullen, P. J., Virdi, A. S. (2015). Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice. Food Research International, 81, 50-57. https://doi.org/10.1016/j.foodres.2015.12.019

Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljević, V., O’Donnell, C. P., Bourke, P., Keener, K. M., Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science and Technology, 35(1), 5–17. https://doi.org/10.1016/j.tifs.2013.10.009

Pereira, G. N., Cesca, K., Leal, A., Cubas, V. (2021). Use of non-thermal plasma in lignocellulosic materials: A smart alternative. Trends in Food Science & Technology, 109, 365–373.

Phillips, G. O., & Williams, P. A. (2011). Handbook of Food Proteins: Handbook of Food Proteins, Woodhead Publishing. https://doi.org/10.1533/9780857093639

Puač, N., Gherardi, M., Shiratani, M. (2018). Plasma agriculture: A rapidly emerging field. Plasma Processes and Polymers, 15(2), 1–5. https://doi.org/10.1002/ppap.201700174

Puprasit, K., Wongsawaeng, D., Ngaosuwan, K. (2020). Non-thermal dielectric barrier discharge plasma hydrogenation for production of margarine with low trans-fatty acid formation. Innovative Food Science and Emerging Technologies, 66(July), 102511. https://doi.org/10.1016/j.ifset.2020.102511

Sakiyama, Y., Graves, D. B. (2009). Neutral gas flow and ring-shaped emission profile in non-thermal RF-excited plasma needle discharge at atmospheric pressure. Plasma Sources Science and Technology, 18, 025022. https://doi.org/10.1088/0963-0252/18/2/025022

Sarangapani, C., Keogh, D. R., Dunne, J., Bourke, P., Cullen, P. J. (2017). Characterization of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324–333. https://doi.org/10.1016/j.foodchem.2017.05.016

Sarangapani, C., Patange, A., Bourke, P., Keener, K., Cullen, P. J. (2018). Recent Advances in the Application of Cold Plasma Technology in Foods. Annual Review of Food Science and Technology, 9, 609-629 https://doi.org/10.1146/annurev-food-030117

Sarangapani, C., Thirumdas, R., Devi, Y., Trimukhe, A., Deshmukh, R. R., Annapure, U. S. (2016). Effect of low-pressure plasma on physico-chemical and functional properties of parboiled rice flour. LWT - Food Science and Technology, 69, 482–489. https://doi.org/10.1016/j.lwt.2016.02.003

Saremnezhad, S., Soltani, M., Faraji, A., Hayaloglu, A. A. (2021). Chemical changes of food constituents during cold plasma processing: A review. Food Research International, 147. Elsevier Ltd. https://doi.org/10.1016/j.foodres.2021.110552

Segat, A., Misra, N. N., Cullen, P. J., Innocente, N. (2015). Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innovative Food Science and Emerging Technologies, 29, 247–254. https://doi.org/10.1016/j.ifset.2015.03.014

Sharma, S., Singh, R. (2020). Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends in Food Science & Technology, 102(March), 30–36. https://doi.org/10.1016/j.tifs.2020.05.013

Shriver, S. K., Yang, W. W. (2011). Thermal and Nonthermal Methods for Food Allergen Control. Food Engineering Reviews, 3(1), 26–43. https://doi.org/10.1007/s12393-011-9033-9

Sifuentes-Nieves, I., Mendez-Montealvo, G., Flores-Silva, P. C., Nieto-Pérez, M., Neira-Velazquez, G., Rodriguez-Fernandez, O., Hernández-Hernández, E., Velazquez, G. (2021). Dielectric barrier discharge and radio-frequency plasma effect on structural properties of starches with different amylose content. Innovative Food Science and Emerging Technologies, 68, 102630. https://doi.org/10.1016/j.ifset.2021.102630

Sikorski, Z. E. (2007). Chemical and functional properties of food components (3rd ed.). Taylor & Francis Group, CRC Press.

Sonawane, S. K., Marar, T., Patil, S. (2020). Non-thermal plasma: An advanced technology for food industry. Food Science and Technology International, 26(8), 727-740. https://doi.org/10.1177/1082013220929474

Spyrou, N., Amorim, J. de. (2019). Atmospheric Pressure DBD Low-Temperature Plasma Reactor for the Treatment of Sugarcane Bagasse. IEEE Transactions on Plasma Science, 47(3), 1583–1592. https://doi.org/10.1109/TPS.2019.2897075

Surowsky, Bjoern, Fischer, A., Schlueter, O., Knorr, D. (2013). Cold plasma effects on enzyme activity in a model food system. Innovative Food Science and Emerging Technologies, 19, 146–152. https://doi.org/10.1016/j.ifset.2013.04.002

Surowsky, Björn, Schlüter, O., Knorr, D. (2015). Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review. Food Engineering Reviews, 7(2), 82–108. https://doi.org/10.1007/s12393-014-9088-5

Takai, E., Kitamura, T., Kuwabara, J., Ikawa, S., Yoshizawa, S., Shiraki, K., Kawasaki, H., Arakawa, R., Kitano, K. (2014). Chemical modification of amino acids by atmospheric-pressure cold plasma in. Journal of Physics D: Applied Physics, 47(2014), 15. https://doi.org/10.1088/0022-3727/47/28/285403

Tammineedi, C. V. R. K., Choudhary, R., Perez-Alvarado, G. C., Watson, D. G. (2013). Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. LWT - Food Science and Technology, 54(1), 35–41. https://doi.org/10.1016/j.lwt.2013.05.020

Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P. (2006). Atmospheric pressure plasmas: A review. 61, 2–30. https://doi.org/10.1016/j.sab.2005.10.003

Thirumdas, R., Kadam, D., Annapure, U. S. (2017). Cold Plasma: An Alternative Technology for the Starch Modification. Food Biophysics, 12(1), 129–139. https://doi.org/10.1007/s11483-017-9468-5

Tolouie, H., Amin, M., Ghomi, H., Hashemi, M. (2021). Argon and nitrogen cold plasma effects on wheat germ lipolytic enzymes: Comparison to thermal treatment. Food Chemistry, 346, 128974. https://doi.org/10.1016/j.foodchem.2020.128974

Tolouie, H., Mohammadifar, M. A., Ghomi, H., Hashemi, M. (2018). Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science and Nutrition, 58 (15), 2583–2597). https://doi.org/10.1080/10408398.2017.1335689

Turner, M. (2016). Physics of Cold Plasma. In Misra, N. N., Schlüter, O., Cullen, P. (ed), Cold Plasma in Food and Agriculture: Fundamentals and Applications (pp. 17 – 49). Elsevier Inc. https://doi.org/10.1016/B978-0-12-801365-6.00002-0

Tyagi, A. K., Malik, A., Gottardi, D., Guerzoni, M. E. (2012). Essential oil vapour and negative air ions: A novel tool for food preservation. Trends in Food Science and Technology, 26(2), 99–113. https://doi.org/10.1016/j.tifs.2012.02.004

Vandamme, J., Nikiforov, A., Dujardin, K., Leys, C., De Cooman, L., Van Durme, J. (2015). Critical evaluation of non-thermal plasma as an innovative accelerated lipid oxidation technique in fish oil. Food Research International, 72, 115–125. https://doi.org/10.1016/j.foodres.2015.03.037

Wellner, N., Mills, E. N. C., Brownsey, G., Wilson, R. H., Brown, N., Freeman, J., Halford, N. G., Shewry, P. R., Belton, P. S. (2005). Changes in Protein Secondary Structure during Gluten Deformation Studied by Dynamic Fourier Transform Infrared Spectroscopy. Biomacromolecules, 6, 255–261.

Wongsagonsup, R., Deeyai, P., Chaiwat, W., Horrungsiwat, S., Leejariensuk, K., Suphantharika, M., Fuongfuchat, A., Dangtip, S. (2014). Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohydrate Polymers, 102, 790–798. https://doi.org/10.1016/j.carbpol.2013.10.089

Xin, T., Xiyan, S., Tianqi, L., Fengchen, L. (2016). Wheat breeding method, a cold plasma treatment (Patent No. CN103999593B). https://patents.google.com/patent/CN103999593B/en.

Xiuwu, Z. (2019). A kind of method for treating seeds improving wheat grain quality (Patent No. CN109168403A). https://patentimages.storage.googleapis.com/ae/70/d8/4ccca364d93890/CN109168403A.pdf

Xu, L., Garner, A. L., Tao, B., Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food and Bioprocess Technology, 10(10), 1778–1791. https://doi.org/10.1007/s11947-017-1947-7

Xu, X., Chen, L., Shifa, W., Yu, Z., Jiayu, W., Xiaoqin, C., Jian, Q. (2016). Method for pretreating lignocellulose by utilizing cold plasma (Patent No. CN105296569A). https://patentimages.storage.googleapis.com/f9/c4/e0/90a84457a3c837/CN105296569A.pdf

Yan, S., Chen, G., Hou, Y., Chen, Y. (2020). Improved solubility of banana starch by dielectric barrier discharge plasma treatment. International Journal of Food Science & Technology, 55(2), 641–648. https://doi.org/10.1111/ijfs.14318

Yang, R., Liu, Y., Meng, D., Wang, D., Blanchard, C. L., Zhou, Z. (2018). Effect of atmospheric cold plasma on structure, activity, and reversible assembly of the phytoferritin. Food Chemistry, 264(April), 41–48. https://doi.org/10.1016/j.foodchem.2018.04.049

Yongxin, Z., Daopin, L., Wei, Z. (2015). Breeding method for early season rice using microwave irradiation (Patent No. CN105028191A). https://patentimages.storage.googleapis.com/32/e8/37/3e6e19fd0b0a00/CN105028191A.pdf

Zhang, B., Xiong, S., Li, X., Li, L., Xie, F., Chen, L. (2014). Effect of oxygen glow plasma on supramolecular and molecular structures of starch and related mechanism. Food Hydrocolloids, 37, 69–76. https://doi.org/10.1016/j.foodhyd.2013.10.034

Zhang, H., Xu, Z., Shen, J., Li, X., Ding, L., Ma, J., Lan, Y., Xia, W., Cheng, C., Sun, Q., Zhang, Z., Chu, P. K. (2015). Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme. Scientific Reports, 5(May), 1–12. https://doi.org/10.1038/srep10031

Zhu, F. (2017). Plasma modification of starch. Food Chemistry, 232(April), 1–7. https://doi.org/10.1016/j.foodchem.2017.04.024

Publicado

16/02/2022

Cómo citar

BARROS, J. H. T. .; SAMPAIO, U. M.; MONTENEGRO, F. M. .; STEEL, C. J. .; AMORIM FILHO, J. de; CLERICI, M. T. P. S. . Efecto del plasma no térmico sobre los nutrientes de alimentos y materias primas a base de cereales. Research, Society and Development, [S. l.], v. 11, n. 3, p. e15611326261, 2022. DOI: 10.33448/rsd-v11i3.26261. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26261. Acesso em: 15 ene. 2025.

Número

Sección

Ciencias Agrarias y Biológicas