Deficiencia de glucosa-6-fosfato deshidrogenasa en la resistencia genética a la malaria: una revisión sistemática e metanálisis
DOI:
https://doi.org/10.33448/rsd-v11i3.26545Palabras clave:
Plasmodium; Polimorfismo genético; Résitance a la enfermedad; Salud pública.Resumen
Se han realizado varios estudios para detectar la variedad de marcadores genéticos asociados a la resistencia a la malaria. Este estudio tuvo como objetivo describir la relación de la deficiencia de glucosa-6-fosfato deshidrogenasa en la resistencia del huésped a Plasmodium spp. Para ello, se realizó una revisión sistemática con meta-análisis, siguiendo las directrices PRISMA. La estrategia de búsqueda se realizó en Medline a través de Pubmed, Science Direct, Lilacs, Scopus y Google academic. El riesgo de sesgo se utilizó para evaluar cada artículo seleccionado mediante la lista de comprobación de la evaluación crítica del Instituto Joanna Briggs. Posteriormente, los trabajos se evaluaron conjuntamente mediante la prueba de Egger. Se encontró un total de 638 artículos. De ellos, 26 participaron en la síntesis cualitativa y 15 en la cuantitativa. De los 26 estudios, 18 informaron de una relación entre el déficit enzimático y la resistencia a la malaria. En cuanto a los resultados del meta-análisis, se encontró que la deficiencia de G6PD puede estar asociada con la resistencia de un individuo a desarrollar malaria, especialmente en asiáticos y africanos. Por lo tanto, los resultados de este artículo pueden ayudar al desarrollo de nuevas estrategias terapéuticas para esta enfermedad, beneficiando a la salud pública en todo el mundo.
Citas
Adukpo, S., Gyan, B. A., Ofori, M. F., Dodoo, D., Velavan, T. P. & Meyer, C. G. (2016). Triggering receptor expressed on myeloid cells 1 (TREM-1) and cytokine gene variants in complicated and uncomplicated malaria. Trop Med Int Health, 21, 1592-1601.
Allison, A. C., & Clyde, D. F. (1961). Malaria in African children with deficient erythrocyte glucose-6-phosphate dehydrogenase. British medical jornal. 1, 1346-1349.
Arguinano, A. A., Dadé, S., Stathopoulou, M., Ndiaye, N. C., Xie, T. M. C., Gibot, S. & Visvikis-Siet, S. (2017). TREM-1 SNP rs2234246 regulates TREM-1 protein and mRNA levels and is associated with plasma levels of L-selectin. PLoS One, 12, 1-15.
Barravieira, B., Meira, D. A., Machado, P. E. A., & Curi, P. R. (1987). Malária no município de Humaitá, estado do Amazonas. XXI. Prevalência da deficiência de glicose-6-fosfato desidrogenase (G6PD) Em amostra da população e em doentes com malaria causada pelo Plasmodium falciparum. Revista do Instituto de Medicina Tropical. 29.
Bonfim, L. G. S., Magalhães, L. S., Santos-Filho, M. A. A., Peres, N. T. A., Corrêa, C. B., Tanajura, D. M., Silva, A. M., Lipscomb, M. W., Borges, V. M., Jesus, A. R., Almeida, R. P. & Moura, T. R. (2017). Leishmania infantum Induces the Release of sTREM-1 in Visceral Leishmaniasis. Front Microbiol., 8, 1-8.
Eiguelman, B., Alves, F. P., Moura, M. M., & Nunes A. C. (2003). The association of genetic markers and malaria infection in the Brazilian Western Amazonian region. Memórias do Instituto Oswaldo Cruz, 98, 455–460.
Brasil. Ministério da Saúde (2009). Secretaria de Vigilância em Saúde. Manual de diagnóstico laboratorial da malária.
Brasil. Ministério da Saúde. (2015). Diretrizes metodológicas: elaboração de revisão sistemática e metanálise de ensaios clínicos randomizados.
Brasil. Ministério da Saúde (2019). Secretaria de Vigilância em Saúde. Guia de vigilância em saúde.
Brasil. Ministério da Saúde (2020). Boletim de casos de Malária da Região Amazônica. Situação epidemiológica da malária na região Amazônica, 2018 a 2020.
Campino, S., Kwiatkowski, D., & Dessein, A. (2006). Mendelian and complex genetics of susceptibility and resistance to parasitic infections. Seminários em Imunologia. 18, 411-422.
Caroline, L. L. C., Graham, B., John, A. H., Stephen, R., & Philippe, B. (2013). Monocytes and macrophages in malaria: protection or pathology?. Trends Parasitology. 29, 26-34
Cavasini, C. E., Mattos, L. C., Couto, A. A., Couto, V. S., & Gollino, Y. (2007). Duffy blood group gene polymorphisms among malaria vivax patients in four areas of the Brazilian Amazon region. Malaria Journal. 6, 1-8.
Coban, C., Lee, M. S. J. & Ishii, K. J. (2018). Tissue-specific immunopathology during malária infection. Nature Reviews, 18, 266-278.
Chu; C. S., Bancone, G., Moore, K. A., Win, H. H., Thitipanawan, N., Po, C., & White, N. J. (2017). Haemolysis in G6PD Heterozygous Females Treated with Primaquine for Plasmodium vivax Malaria: A Nested Cohort in a Trial of Radical Curative Regimens. PLoS Medicine. 4.
Dombrowski, J. G., Souza, R. M., Curry, J., Hinton, L., Silva, N. R. M., Grignard, L., Gonçalves, L. A., Gomes, A. R., Epiphanio, S., Drakeley, C., Huggett, J., Clark, T. G., Campino, S., & Marinho, C. R. F. (2017). G6PD deficiency alleles in a malaria-endemic region in the Western Brazilian Amazon. Malar Journal, 16.
Duarte, E.C., Pang, L., & Fontes, C.J.F. (2003). Validade interna de ensaios terapêuticos em malária: análise de estudos de avaliação da emergência de resistência in vivo do Plasmodium vivax a doses padronizadas de primaquina. Revista da Sociedade Brasileira de Medicina Tropical. 36, 383-386.
Guindo, A. Fairhurst, R. M., Doumbo, O. K., Wellems, T. E., & Diallo, D. A. (2007). deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Medicine. 4.
Júnior et al. (2021). TREM1 rs2234237 (Thr25Ser) polymorphism in patientes with cutaneous leishmaniasis caused by Leishmania guyanensis: A case-control study in the State of Amazonas, Brazil. Pathogens, 10(498), 1-11.
Khim, N., Benedet, C., Kim, S., Kheng, S., Siv, S., & Leang, R. (2013). G6PD deficiency in Plasmodium falciparum and Plasmodium vivax malaria-infected Cambodian patients. Malar Journal. 12.
Kotepui, M., Uthaisar, K., Phunphuech, B., & Phiwklam, N. (2016). Prevalence and hematological indicators of G6PD deficiency in malaria-infected patients. Infectious Diseases of Poverty. 5.
Kruatrachue, M., Charoenlarp, P., Chongsuphajaisiddhi, T., & Harinasuta, C. (1962). Erythrocyte glucose-6-phosphate dehydrogenase and malaria in Thailand. Lancet.2, 1183-1186.
Kruatrachue, M., Bhaibulaya, M., Clongkamnaukorn, K., Harinasuta, C. (1966). Re-examination of the relationship of erythrocyte Glucose-6-Phosphate Dehydrogenase and malaria in Thailand. World Health Organization,
Liang, X. Y., Chen, J. T., Ma, Y., Huang, H., Xie, D., Monte- Nguba, S., Ehapo, C. S., Eyi, U. M., Zheng, Y., & Liu, X. (2019). Evidence of positively selected G6PD A- allele reduces risk of Plasmodium falciparum infection in African population on Bioko Island. Molecular Genetics Genomic Medicine.8, 1-11.
Longo, L., Vanegas, O. C., Patel, M., Rosti, V., Li, H., & Waka, J. (2002). Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO Journal, 21, 4229-4239.
Manjurano, A., Sepulveda, N., Nadjm, B., Mtove, G., Wangai, H., Maxwell, C., Olomi, R., Reyburn, H., Riley, E. M., Drakeley, C. J. & Clark, T. G. (2017). African glucose-6-phosphate dehydrogenase alleles associated with protection from severe malaria in heterozygous females in Tanzania. PLoS Genet, 11.
Maulén, N. P., & Cifuentes O. L. (2018). Polimorfismos genéticos asociados a la inmunidad innata y la susceptibilidad genética a la tuberculosis. Revista chilena de enfermedades respiratorias, 34(4), 226-235.
Monteiro, W. M., Val, F. F., Siqueira, A. M., Franca, G. P., Sampaio, V. S., & Melo, G. C. (2014). G6PD deficiency in Latin America: systematic review on prevalence and variants. Institute Oswaldo Cruz. 109, 553-568.
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine. 6.
Nahrevanian, H. (2006). Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection. Revista Brasileira de Doenças Infecciosas. 10, 283-292
Notaro, R., Afolayan, A., & Luzzatto, L. (2000). Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history. FASEB Journal, 14,485-494.
Ohanna, C. L. B. (2019). Polimorfismos selecionados por patógenos em genes do metabolismo energético e associação com doenças micobacterianas. Tese de doutorado – Instituto Oswaldo Cruz, Pós-Graduação em Bilogia Celular e Molecular, 223.
Pereira, M. G., & Galvão, T. F. (2014). Heterogeneidade e viés de publicação em revisões sistemáticas. Epidemiologia e Serviços de Saúde. 23, 775–778.
Plewes, K., Soontarawira, I., Ghose, A., Bancone, G., Kingston, H. W., Herdman, M. T., Leopold, S. J., Ishioka, H., Faiz, M., Anstey, N., Day, N., Hossain, M., Imwong, M., Dondorp, A., & Woodrow, C. (2017). Genotypic and phenotypic characterization of G6PD deficiency in bengali adults with severe and uncomplicated malaria. Malar Journal. 16.
Reich, D. E., Reich, D.E., Cargill, M., Cargill, M. & Bolk, S. (2001). Linkage disequilibrium in the human genome. Nature, 411, 199-204.
Rocha, A. P., Magalhães, P. K. R., Maia, A. L., & Maciel, L. M. Z. (2007). Polimorfismos genéticos: implicações na patogênese do carcinoma medular de tireóide. Arquivo brasileiro de endocrinologia e metabologia, 51(5), 723-731.
Ruwende, C., Khoo, S.C., Snow, R. W., Yates, S., Kwiatkowski, D., Gupta, S., Warn P., Allsopp, C., Gilbert, S., Peschu, N., Newbold, C., Greenwood, B., Marsh, K., & Hill, A. (1995). Natural selection of hemy and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature. 376, 246-249.
Smith, T. G., Ayi, K., Serghides, L., Mcallister, C. D., & Kain, K. C. (2002). Innate immunity to malaria caused by Plasmodium falciparum. Jornal Oficial da Sociedade Canadense de Investigação Clínica. 25, 262-272.
Joanna Briggs Institute. (2020). Critical Appraisal Tools Checklist. https://jbi.global/critical-appraisal-tools
Tishkoff, S. A. & Williams, S. M. (2002). Genetic analysis of African populations: Human evolution and complex disease. Nature Reviews Genetics, 3, 611-621.
Veronesi, R., & Focaccia, R. (1999). Imunologia e imunopatologia da malária. Tratado de infectologia.
World Health Organization (WHO). (2019). World Malaria Report. 232.
Yi, H (2019). The glucose-6-phosphate dehydrogenase Mahidol variant protects against uncomplicated Plasmodium vivax infection and reduces disease severity in a Kachin population from northeast Myanmar. Infection. Genetics and Evolution. 75, 1-7.
Yuthavong, Y., & Wilairat, P. (1993). Protection against malaria by thalassaemia and haemoglobin variants. Parasitol Today. 9, 241–245.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Marcelo Cerilo Santos-Filho; Maria Tairla Viana Gonçalves; Karolayne Silva Souza; Myrela Conceição Santos de Jesus; Luciane Moreno Storti-Melo; Erika dos Santos Nunes; Katia Cilene da Silva Felix
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.