Desarrollo de un secador solar de lecho fijo: estudio experimental y simulación CFD
DOI:
https://doi.org/10.33448/rsd-v9i3.2667Palabras clave:
Secado solar; Sostenibilidad; Moringa oleífera; Hojas; Soja.Resumen
Ante el desafío de desarrollar secadores solares más eficientes, la técnica de dinámica de fluidos computacional (CFD) se aplicó en este trabajo para probar diferentes configuraciones de entrada de aire en un secador solar de lecho fijo con entradas laterales. A través de las simulaciones, se determinó la mejor configuración que favoreció el contacto entre partículas. Se construyó un secador solar de lecho fijo, en el que se realizaron experimentos con semillas de soja y hojas de Moringa oleífera. Se probaron dos configuraciones en la secadora: entradas de aire completamente abiertas y parcialmente abiertas. Los resultados de CFD mostraron que para entradas de aire completamente abiertas, el flujo de aire era más pronunciado en la parte superior de lo lecho, cerca del fan. Esto puede explicar los resultados experimentales de secado, en los que los materiales presentaron un secado heterogéneo, más eficiente en la parte superior del lecho. Según las simulaciones, el perfil de velocidad del aire se vuelve más homogéneo cuando el aire se alimenta solo en la base del lecho. Por lo tanto, el secado en la configuración parcialmente abierta fue más homogéneo, y con una tasa de secado alrededor de 300% más alta que la obtenida en la condición con entradas completamente abiertas.
Citas
Agrawal, A. & Sarviya, R.M. (2016). A review of research and development work on solar dryers with heat storage. Int. J. Sustain. Energy, 35, 583–605.
Akbulut, A. & Durmuş, A. (2010). Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy, 35, 1754–1763.
Almeida, R.L.J., Santos, N.C., Pereira, T.S., Queiroga, A.P.R., Silva, V.M.A, Ribeiro, V.H.A., Araújo, R.D.A., Cabral, M.B., Silva, L.R.I. & Borges, E.M.E.S. (2020). Azuki bean drying kinetics: mathematical modeling and thermodynamic properties. Research, Society and Development, 9(3), e27932316.
Andrade, W.A., Cruz, G.P., Silva, M.S., Santos, M.F.O., Silva, G.F. & Santos, J.P.L (2020). Synthesis of a tensoative based on oil Moringa Oleífera Lam and formulation of microemulsioned systems for breaking oil water emulsions. Research, Society and Development, 9(2), e193922194.
Araújo, B.S.A. & Santos, K.G. (2017). CFD Simulation of Different Flow Regimes of the Spout Fluidized Bed with Draft Plates. Mater. Sci. Forum, 899, 89–94.
Atalay, H., Turhan Çoban, M. & Kıncay, O. (2017). Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system. Energy, 134, 382–391.
Barros, S.L., Câmara, G.B., Leite, D.D.F., Santos, N.C., Santos, F.S., Soares, T.C., Lima, A.R.N., Soares, T.C., Oliveira, M.N., Vasconcelos, U.A.A., Albuquerque, A.P. & Queiroz, A.J.M. (2020). Mathematical modeling of drying kinetics of kino bark (Cucumis metuliferus). Research, Society and Development, 9(1), e60911608.
Béttega, R., Barrozo, M., Corrêa, R. & Freire, J. (2013). CFD simulation of heat transfer inside packed beds: Evaluation of effective thermal conductivity, JP Journal of Heat and Mass Transfer, 8(2), 137-148 .
Béttega, R., Moreira, M.F.P., Corrêa, R.G. & Freire, J.T. (2011). Mathematical simulation of radial heat transfer in packed beds by pseudohomogeneous modeling. Particuology, 9, 107–113.
Bortolotti, C.T., Santos, K.G., Francisquetti, M.C.C., Duarte, C.R. & Barrozo, M.A.S. (2013). Hydrodynamic study of a mixture of west Indian cherry residue and soybean grains in a spouted bed. Can. J. Chem. Eng., 91(11), 1871-1880.
Câmara, G.B., Oliveira, T.K.B., Leite, D.D.F., Soares, T.C., Lima, A.R.N., Vasconcelos, S.H., Barbosa , M.L. & Trigueiro, L.S.L. (2019). Physico-chemical, toxicological and nutritional characterization of dry and in natura Moringa oleifera Lam leaves, Research, Society and Development, 8(11), e178111450.
Cunha, F.G., Santos, K.G., Ataíde, C.H., Epstein, N. & Barrozo, M.A.S. (2009). Annatto Powder Production in a Spouted Bed: An Experimental and CFD Study. Ind. Eng. Chem. Res., 48, 976–982.
Cunha, R.N., Santos, K.G., Lima, R.N., Duarte, C.R. & Barrozo, M.A.S. (2016). Repose angle of monoparticles and binary mixture: An experimental and simulation study. Powder Technol., 303, 203–211.
Ergun, S. (1952). Fluid Flow Through Packed Column, Chem. Eng. Prog., 48(2), 89-95.
Gomes, M.E.M., Albuquerque, A.P., Rodrigues, T.J.A., Wanderley, D.M.A., Rocha, A.P.T. & Silva, O.S. (2020). Prediction of kinetic models for drying lemon balm leaves in a convective dryer. Research, Society and Development, 9(2), e86922052.
INPE (2017). Brazilian Atlas of Solar Energy. http://labren.ccst.inpe.br/atlas_2017-en.html.
Krawczyk, P. & Badyda, K. (2011). Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer, Archives of Thermodynamics, 32, 3–16.
Leon, M.A. & Kumar, S. (2008). Design and Performance Evaluation of a Solar-Assisted Biomass Drying System with Thermal Storage. Dry. Technol., 26, 936–947.
Mardiyani, S.A., Hadi Sumarlan, S., Dwi Argo, B. & Setyo Leksono, A. (2019). Design of Eco-friendly Fixed Bed Dryer Based on A Combination of Solar Collector and Photovoltaic Module, Nature Environment and Pollution Technology, 18(1), 21-30.
Müller, C.R., Scott, S.A., Holland, D.J., Clarke, B.C., Sederman, A.J., Dennis, J.S. & Gladden, L.F. (2009). Validation of a discrete element model using magnetic resonance measurements. Particuology, 7(4), 297–306.
Vieira Neto, J.L., Duarte, C.R., Murata, V. V. & Barrozo, M.A.S. (2008). Effect of a Draft Tube on the Fluid Dynamics of a Spouted Bed: Experimental and CFD Studies. Drying Technol., 26(3), 299–307.
Olabode; Z., Olunlade, B., Akanbi, C. & Adeola, A. (2015). Effects of Drying Temperature on the Nutrients of Moringa (Moringa oleifera) Leaves and Sensory Attributes of Dried Leaves Infusion. Direct research journal of agriculture and food science, 3(5), 117–122.
Perumal, S., Klaus, B., 2003. Antioxidant Properties of Various Solvent Extracts of Total Phenolic Constituents from Three Different Agroclimatic Origins of Drumstick Tree (Moringa oleifera Lam.) Leaves. J. Agric. Food Chem., 51(8), 2144–2155.
Ratti, C. & Mujumdar, A.S. (1997). Solar drying of foods: Modeling and numerical simulation. Solar Energy, 60, 151–157.
Rigueto, C.V.T., Nazari, M.T., Evaristo, L.M., Rossetto, M., Dettmer, A., Geraldi, C.A.Q. & Piccin, J.S. (2020). Influence of foam-mat drying temperature of red jambo (Syzygium malaccense). Research, Society and Development, 9(3), e40932382.
Santos, A.R.A., Cruz, L.A. & Gontijo, H.M. (2019). Study of water and sewage systems in the rural community of Capela Branca in Bela Vista de Minas/MG. Research, Society and Development; 8(2), e4782740.
Santos, K.G., Francisquetti, M.C.C., Malagoni, R.A. & Barrozo, M.A.S. (2015). Fluid Dynamic Behavior in a Spouted Bed with Binary Mixtures Differing in Size. Drying Technology, 33(14), 1746–1757.
Santos, K.G., Santos, D.A., Duarte, C.R., Murata, V.V., Barrozo, M.A.S. (2012). Spouting of Bidisperse Mixture of Particles: A CFD and Experimental Study, Drying Technology, 30, 1354–1367.
Santos, N.C., Leite, D.D.F., Câmara, G.B., Barros, S.L. & Santos, F.S. (2020a). Mathematical modeling of drying kinetics of grapefruit peels (Citrus paradisi Macf.).Research, Society and Development, 9(1), e61911609.
Santos, N.C., Almeida, R.L.J., Pereira, T.S., Queiroga, A.P.R., Silva, V.M.A., Amaral, D.S., Almeida, R.D., Ribeiro, V.H.A., Barros, E.R. & Silva, L.R.I. (2020b) Mathematical modeling applied to the drying kinetics of pitomba bark (Talisia esculenta). Research, Society and Development, 9(2), e46921986.
Silva, D.I.S., Nogueira, G.D.R., Duzzioni, A.G. & Barrozo, M.A.S. (2013). Changes of antioxidant constituents in pineapple (Ananas comosus) residue during drying process. Ind. Crops Prod., 50, 557–562.
Silva, D.I.S., Souza, G.F.M.V. & Barrozo, M.A.S. (2019). Heat and mass transfer of fruit residues in a fixed bed dryer: Modeling and product quality. Drying Technology, 37(10), 1321–1327.
Silvério, B.C., Santos, K.G., Duarte, C.R. & Barrozo, M.A.S. (2014). Effect of the Friction, Elastic, and Restitution Coefficients on the Fluid Dynamics Behavior of a Rotary Dryer Operating with Fertilizer. Ind. Eng. Chem. Res., 53(21), 8920–8926.
Souza, G.F.M.V., Miranda, R.F., Lobato, F.S. & Barrozo, M.A.S. (2015). Simultaneous heat and mass transfer in a fixed bed dryer. Appl. Therm. Eng., 90, 38–44.
Souza, G. F. M. V., Miranda, R.F., Barrozo, M.A.S. (2015). Soybean ( Glycine max L. Merrill) Seed Drying in Fixed Bed: Process Heterogeneity and Seed Quality. Drying Technology, 33(14), 1779–1787.
Tegenaw, P. D., Gebrehiwot, M. G. &Vanierschot, M. (2019). On the comparison between computational fluid dynamics (CFD) and lumped capacitance modeling for the simulation of transient heat transfer in solar dryers. Solar Energy, 184, 417–425.
Vieira, L.G.M., Silva, D.O. & Barrozo, M.A.S. (2016). Effect of Inlet Diameter on the Performance of a Filtering Hydrocyclone Separator. Chem. Eng. Technol., 39(8), 1406–1412.
Vieira Neto, J.L., Costa, D.D.L., Souza, L.V., Pires, R.F., Souza, D.L., Silvério, B.C. & Santos, K.G. (2017). A Fluid Dynamic Study in a Rotating Disk Applied in Granulation of Fertilizers. Mater. Sci. Forum, 899, 142–147.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.