Estudio del efecto modulador de aceite de chía (Salvia hispanica L.) benzo(a)pireno y doxorubicina clorhidrato

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i4.27254

Palabras clave:

Antioxidante; Mupción; Efecto antigenotóxico; Drosophila melanogaster; Mutación somática y prueba de recombinación.

Resumen

La chía (Salvia hispanica L.) es una planta mexicana perteneciente a la familia Lamiaceae, que representa una de las cuatro principales semillas cultivadas por los pueblos precolombinos, principalmente los Astecas que la utilizaban como medicina y componente nutricional. Actualmente, se ha recordado, los ellas son ricos en ácidos grasos poliinsaturados, con actividad antioxidante y compuestos esenciales para el mantenimiento del organismo. A esta planta se le atribuyen varios beneficios, incluyendo la reducción de problemas cardiovasculares, psoriasis, depresión, Alzheimer, diabetes, artritis y cáncer. Teniendo en cuenta el uso   generalizado del aceite de chía (OC) en la sociedad actual, se justificó investigar el efecto modulador de este aceite cuando se combina con clorhidrato de benzo(a)pireno y doxorrubicina, utilizando SMART (Mutación somática y prueba de recombinación), una prueba capaz de detectar la mutación somática y las actividades de recombinación, con pérdida de heterocigotos, que se pueden observar en las formas de diferentes hogares tricomas presentes en las alas del  Drosophila melanogaster.  Los resultados indicaron que el aceite de chía redujo las frecuencias de mutaciones causadas por benzo(a)pireno (BaP) y doxorubicina clorhidrato (DRX), presentando así efecto antigenotóxico.

Citas

Abraham, S. K. (1994). Antigen toxicity of coffee in the Drosophila assay for somatic mutation and recombination. Mutagenesis, 9(4),383-386.

Anter, J., Sánchez C. J., Hamss, R., Molina, R. M., Serrano, M. A., Analla, M. & Morag, A. Á. (2010). Modulation of genotoxicity by extra-virgin olive oil and some of its distinctive components assessed by use of the Drosophila wing-spot test. Mutation Research, (2),137-142.

Ayerza, R. & Coates, W. (2005). Chia: Rediscovering a Forgottens Crop of the Aztecs. The University of Arizona Press, Tucson, 197. – 13: 978-0816524884.

Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L. M. & Ferreira, I. C. F. R. (2008). Wild and Commercial Mushrooms as Souce of Nutrients and Nutraceuticals. Food and Chemical Toxicology, 46(8), 2742-2747.

Cahill, J. P. , (2003). Etnobotânica de chia, Salvia hispanica l. (Lamiaceae). Economic Botany, 57(4), 604-618.

Chiucheta, S. J. R. & Castro-Prado, M. A. (2002). Doxorubicin and Etoposídeo induce somatic recombination in diploid cells of Aspergillus nidulans. Brazilian Journal of Microbiology, 33,255-259.

Coelho, M. S. & Salas-Mellado, M. M. (2014). Chemical Characterization of Chia (Salvia hispanica L.) for Use in Food Products. Journal of Food and Nutrition Research, 2(5),263-269.

Ramos, T. C. P. M., de Souza E. F., Santos, M. N., Fiorucci, A. R., Cardoso, A. L. & da Silva, M. S. (2019). Avaliação do potencial antioxidante e composição química de blends de óleo de girassol (Helianthus annuus L.) com óleo de coco (Cocos nucifera L.). Orbital: The Electronic Journal of Chemistry, 11(4), 246-253.

Dröge, W. Free radicals in the physiological control of the cell function. (2002). Physiological Reviews, 82(1),47-95.

Dubois, V., Breton, S., Linder, M., Fanni, J. & Parmentier, M. (2007). Fatty acid profiles of vegetable oil swith regard to their nutritional potential. European Journal of Lipid Science Technology, 109:710-732.

Follain, G., Mercier, L.; Osmani, N.; Harlepp, S. & Goetz, J. G. (2016). Seeing is believing: multi-scale Spatio-temporal imaging towards in vivo cell biology. Journal of Cell Science p. jcs. 189001, 2016. Disponível em: < http://jcs.biologists.org/content/130/1/23 >, Acesso em: 05 dez. 2021.

Fragiorge, E. J., Spanó, M. A. & Antunes, L. M. G. (2007). Modulatory effects of the antioxidant ascorbic acid on the direct genotoxicity of doxorubicin in somatic cells of Drosophila melanogaster. Genetics and Molecular, 30(2), 449-455.

Frei, H. & Würgler, F. E. (1988). Statistical Methods to decide wether mutagenicity teste data from Drosophila assays indicate a positive, negative or inconclusive result. Mutation Research, 203(4),297-30.

Gazi, I. L., Liberopoulos, E. N., Saougos, V. G. & Elisaf, M. (2006). Beneficial effects of Omega-3 fatty acids: The current evidence. Journal of Cardiology, 47:223-231.

Graf, U.; Würgler, F. E., Kats, A. J., Frei, H., Juon, H., Hall, C. B. E. & Kale, P. G. (1983). Somatic mutation and recombination test in Drosophila melanogaster. Environmental Mutagenesis, 6(2),153-188.

Graf, U. & Van Schaik, N. (1992). Improved high bioactivation cross for the wing Somatic and Recombination Test in Drosofila melanogaster. Mutation Research, 271(1),59-71, 1992.

Guo, Xiao-fei, Tong, Wen-fen., Ruan, Y., Sinclair, A. J. & Li, D. ( 2020). Metabolismo diferente de EPA, DPA e DHA em humanos: um estudo cruzado duplo -cego. Prostaglandins, Leukotrienes and Essential Fatty Acids, 158, 102033.

INCA - Instituto Nacional de Câncer, José Alencar Gomes da Silva. (2019). ABC do câncer: abordagens básicas para o controle do câncer . 5. ed. rev. atual. ampl. Disponível em: <https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document/livro-abc-5-edicao_1.pdf>, Acesso em 26 jun. 2021.

Ixtaina, V. Y., Martínez, M. L., Spotorno, V., Mateo, C. M., Maestri, D. M. & Diehl, B. W. K. (2011). Characterization of Chia Seed Oils Obtained by Pressing and Solvent Extraction. Journal of Food Composition Analysis, 24(2), 166-174.

Kastenbaum, M. A & Bowman, K. O. Tables for determining the statistical significance of mutation frequencies. Mutation Research, 9,527-549.

Kelkel, M., Jacob, C., Dicato, M. & Diederich, M. (2010). Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecules, 15(10),7035-7074.

Kwok, J. C. & Richardson, D. R. (2003). Anthracyclines Induce Accumulation of Iron in Ferritin in Myocardial and Neoplastic Cells: Inhibition of the Ferritin Iron Mobilization Pathway. Molecular Pharmacology, 63(4),849-861.

Ling, H., Kulasiri, D. & Samarasinghe, S. (2010). Robustness of G1/S checkpoint pathways in cell cycle regulation based on probability of DNA-damaged cells passing as healthy cells. Biosystems, 101(3), 213-221.

Marcinek, K. & Krejpcio, Z. (2017). Sementes de chia (Salvia hispanica): propriedades promotoras da saúde e aplicações terapêuticas – uma revisão. Roczniki Państwowego Zakładu Higieny, 68(2):123-129.

Marineli, R. S., Lenquiste, S. A., Moraes, E. A. & Marostica Jr, M. R. (2015a). Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats. Food research Internacional, 76(3),666-674.

Marineli, R. S., Moura, C. S., Moraes, E. A., Lenquiste, S. A., Lollo, P. C. B., Morato, P. N., Farfan, J. A. & Maróstica Jr, M. R. (2015b). Chia (Salvia hispanica L.) enhances HSP, PGC-1α expressions and improves glucose tolerance in diet-induced obese rats. Nutrition, 31(5),740-748.

Mathew, J. & Thoppil, J. E. (2012). Investigation of the antimutagenic activity of three Salvia extracts. International Journal of Pharmacy and Pharmaceutical Sciences, 4(3),225-230.

Melo, D., Machado, T. B. & Oliveira, M. B. P. (2019).Chia seeds: an ancient grain trending in modern human diets. Food & function, 10(6), 3068-3089.

Minotti, G., Menna, P., Salvatorelli, E., Cairo, G. & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56(2),185-229.

Naspinski, C., Gu, X., Zhou, G. D., Talcott, M. S. U., Donnelly, K. C. & Tian, Y. (2008). Pregnane x receptor protects HepG2 cells from BaP-induced DNA damage. Toxicological Sciences, 104(1),67-73.

Pierron, G. (2015). The basis for Molecular Genetics in Cancer. In: (Ed.). Pan-cancer Integrative Molecular Portrait Towards a New Paradigm in Precision Medicine: Springer,15-30.

Sánchez, P., Llorente, M. T. & Castanõ, A. (2000). Flow cytometric detection of micronuclei and cell cycle alterations in fish-derived cells after exposure to three model genotoxic agents: mitomycin C, vincristine sulfate and benzo (a) pyrene. Mutation Research, (1),113-122.

Sargi, S. C., Silva, B. C., Santos, H. M. C., Montanher, P. F., Boeing, J. S., Santos Jr, O. O., Souza, N. E. & Visentainer, J. V. (2013)Antioxidant capacity and chemical composition in seeds rich in ômega-3: chia, flax, and perilla. Food Science and Technology, 33(3),541-548.

Valadares, B. L. B., Graf, U. & Spanó, M. A. (2008). Inhibitory effects of water extract of própolis on doxorubicin-induced somatic mutation and recombination in Drosophila melanogaster. Food and Chemical Toxicology, 46(3),1103-1110.

Vienneau, D. S., Deboni, U. & Wells, P. G. (1995). Initiation of micronuclei by benzo (a) pyrene and benzo (e) pyrene in UDP glucuronosyltransferase deficient cultured rat skin fibroblasts. Cancer Research, 55(5),1045-1051.

Zheng, G., Fu, Y. & He, C. (2014). Nucleic acid oxidation in DNA damage repair and epigenetics. Chemical reviews, 114(8), 4602-4620.

Descargas

Publicado

17/03/2022

Cómo citar

GUTERRES, Z. R.; LOPES, T. F. de S. .; QUEIRÓZ, D. F. de .; SILVA, L. M. G. E. da .; MIGLIOLO, L. . Estudio del efecto modulador de aceite de chía (Salvia hispanica L.) benzo(a)pireno y doxorubicina clorhidrato. Research, Society and Development, [S. l.], v. 11, n. 4, p. e23611427254, 2022. DOI: 10.33448/rsd-v11i4.27254. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27254. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud