Factores que afectan la criopreservación de ovocitos y embriones en búfalos (Bubalus bubalis): Una revisión
DOI:
https://doi.org/10.33448/rsd-v11i4.27337Palabras clave:
Criolesiones; Calidad del embrión; Semen; Embriones sexados; Vitrificación.Resumen
La criopreservación de ovocitos y embriones es una técnica complementaria para la producción de embriones in vivo e in vitro. En la última década, la técnica se ha mejorado pero no alcanzó un nivel comercial satisfactorio. Además, los resultados fueron variables. Las tasas de preñez y nacidos vivos fueron del 16 al 52% y del 5,3 al 26,9% después de la implantación de embriones vitrificados, respectivamente (del año 1993 al 2020). En definitiva, la calidad de los ovocitos y embriones es el factor más importante para obtener mejores resultados tras la criopreservación. La adición de antioxidantes y agentes hipolipemiantes al medio es un factor que mejora la tolerancia criogénica. Además, la vitrificación en dos pasos es un método confiable para la crioconservación. El estudio de los efectos epigenéticos y la introducción de tecnologías lipidómicas, transcriptómicas y proteómicas pueden ayudar a mejorar está tecnología.
Citas
Abd-Allah S. M. (2009). In vitro production of buffalo embryos from stepwise vitrified immature oocytes. Veterinaria Italiana, 45(3), 425-429.
Abd-Allah, S. M. (2011). Stepwise vitrification of in vitro produced buffalo blastocysts. Archivos de Zootecnia, 60(231), 617-624. https://dx.doi.org/10.4321/S0004-05922011000300050
Attanasio, L., Boccia, L., Vajta, G., Kuwayama, M., Campanile, G., Zicarelli, L., Neglia, G., & Gasparrini, B. (2010). Cryotop vitrification of buffalo (Bubalus bubalis) in vitro matured oocytes: effects of cryoprotectant concentrations and warming procedures. Reproduction in Domestic Animals, 45(6), 997-1002. https://doi.org/10.1111/j.1439-0531.2009.01475.x
Barnwell, C. V., Farin, P. W., Ashwell, C. M., Farmer, W. T., Galphin, S. P., Jr, & Farin, C. E. (2016). Differences in mRNA populations of short and long bovine conceptuses on Day 15 of gestation. Molecular Reproduction and Development, 83(5), 424-441. https://doi.org/10.1002/mrd.22640
Barrera, N., Dos Santos Neto, P. C., Cuadro, F., Bosolasco, D., Mulet, A. P., Crispo, M., & Menchaca, A. (2018). Impact of delipidated estrous sheep serum supplementation on in vitro maturation, cryotolerance and endoplasmic reticulum stress gene expression of sheep oocytes. PloS One, 13(6), e0198742. https://doi.org/10.1371/journal.pone.0198742
Boccia, L., De Rosa, A., Attanasio, L., Neglia, G., Vecchio, D., Campanile, G., Zicarelli L., & Gasparrini, B. (2013). Developmental Speed Affects the Cryotolerance of InVitro Produced Buffalo (Babalus bubalis) Embryos. Italian Journal of Animal Science, 12(4), e80. https://doi.org/10.4081/ijas.2013.e80
Boonkusol, D., Faisaikarm, T., Dinnyes, A., & Kitiyanant, Y. (2007). Effects of vitrification procedures on subsequent development and ultrastructure of in vitro-matured swamp buffalo (Bubalus bubalis) oocytes. Reproduction, Fertility, and Development, 19(2), 383-391. https://doi.org/10.1071/rd06097
Cassano, P., Flück, M., Giovanna Sciancalepore, A., Pesce, V., Calvani, M., Hoppeler, H., Cantatore, P., & Gadaleta, M. N., (2010). Muscle unloading potentiates the effects of acetyl-L-carnitine on the slow oxidative muscle phenotype. BioFactors 36(1), 70-77. https://doi.org/10.1002/biof.74
Dhali, A., Manik, R. S., Das, S. K., Singla, S. K., & Palta, P. (2000). Post-vitrification survival and in vitro maturation rate of buffalo (Bubalus bubalis) oocytes: effect of ethylene glycol concentration and exposure time. Animal Reproduction Science, 63(3-4), 159–165.
Estudillo, E., Jiménez, A., Bustamante-Nieves, P. E., Palacios-Reyes, C., Velasco, I., & López-Ornelas, A. (2021). Cryopreservation of Gametes and Embryos and Their Molecular Changes. International Journal of Molecular Sciences, 22(19), 10864. https://doi.org/10.3390/ijms221910864
Ferreira, E. M., Vireque, A. A., Adona, P. R., Meirelles, F. V., Ferriani, R. A., & Navarro, P. A. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology, 71(5), 836-848.
Gamarra, P. F., Rendón, V. V., Chávez, R. A., Perez, S. L., Walter C. M., & Berdugo, G., J. (2015). Establishing an in vitro production program for buffalo embryos (Bubalus bubalis) in Colombia. Revista MVZ Córdoba, 20(1), 4495-4504. https://doi.org/10.21897/rmvz.80
Gasparrini, B., Attanasio, L., De Rosa, A., Monaco, E., Di Palo, R., & Campanile, G. (2007). Cryopreservation of in vitro matured buffalo (Bubalus bubalis) oocytes by minimum volumes vitrification methods. Animal Reproduction Science, 98(3-4), 335-342. https://doi.org/10.1016/j.anireprosci.2006.04.046
Gautam, S. K., Verma, V., Palta, P., Chauhan, M. S., & Manik, R. S. (2008). Effect of type of cryoprotectant on morphology and developmental competence of in vitro-matured buffalo (Bubalus bubalis) oocytes subjected to slow freezing or vitrification. Reproduction, Fertility, and Development, 20(4), 490-496. https://doi.org/10.1071/rd07203
Ghys, E., Dallemagne, M., De Troy, D., Sauvegarde, C., Errachid, A., & Donnay, I. (2016). Female bovine blastocysts are more prone to apoptosis than male ones. Theriogenology, 85(4), 591-600.
Gupta, A., Singh, J., Dufort, I., Robert, C., Dias, F., & Anzar, M. (2017). Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage. PloS One, 12(11), e0187268. https://doi.org/10.1371/journal.pone.0187268
Gustina, S., Hasbi, H., Karja, N., Setiadi, M. A., & Supriatna, I. (2017). Ultrastructure changes in buffalo (Bubalus bubalis) oocytes before and after maturation in vitro with sericin. Animal Science Journal, 88(12), 1911-1915. https://doi.org/10.1111/asj.12839
Hochi S. (2016). Microtubule assembly crucial to bovine embryonic development in assisted reproductive technologies. Animal Science Journal, 87(9), 1076–1083. https://doi.org/10.1111/asj.12621
Hufana-Duran, D., Pedro, P. B., Salazar Jr., A.L., Venturina, H.V., Duran, P.G., Takahashi, Y., Kanai, Y., & Cruz. L.C. (2008). Twin calf production in water buffaloes following non-surgical transfer of in vitro-produced-vitrifed embryos. Philippine Journal of Science, 137, 99-104.
Hufana-Duran, D., Pedro, P. B., Venturina, H. V., Hufana, R. D., Salazar, A. L., Duran, P. G., & Cruz, L. C. (2004). Post-warming hatching and birth of live calves following transfer of in vitro-derived vitrified water buffalo (Bubalus bubalis) embryos. Theriogenology, 61(7-8), 1429-1439. https://doi.org/10.1016/j.theriogenology.2003.08.011
Jainudeen, M. R., Wahid, H., & Hafez, E. S. E. (2016). Ovulation Induction, Embryo Production and Transfer, In Reproduction in Farm Animals (Ed., Hafez, E.S.E & Hafez, B., (pp. 405-430). São Paulo, Brasil.
Kasiraj, R., Misra, A. K., Mutha Rao, M., Jaiswal, R. S., & Rangareddi, N. S. (1993). Successful culmination of pregnancy and live birth following the transfer of frozen-thawed buffalo embryos. Theriogenology, 39(5), 1187-1192. https://doi.org/10.1016/0093-691x(93)90016-x
Khalil, W. A, Gabr, A., Shamiah, M., El-Haif, A.M.A., & Abdel-Khalek, A.E. (2014). In vitro Maturation, Fertilization and Embryo Development of Immature Buffalo Oocytes Vitrified by Different Cryodevice Types. Asian Journal of Animal and Veterinary Advances, 9, 428-439. https://scialert.net/abstract/?doi=ajava.2014.428.439
Kirillova, A., Smitz, J., Sukhikh, G. T., & Mazunin, I. (2021). The Role of Mitochondria in Oocyte Maturation. Cells, 10(9), 2484. https://doi.org/10.3390/cells10092484
Liang, X. W., Lu, Y. Q., Chen, M. T., Zhang, X. F., Lu, S. S., Zhang, M., Pang, C. Y., Huang, F. X., & Lu, K. H. (2008). In vitro embryo production in buffalo (Bubalus bubalis) using sexed sperm and oocytes from ovum pick up. Theriogenology, 69(7), 822-826. https://doi.org/10.1016/j.theriogenology.2007.11.021
Liang, Y. Y., Phermthai, T., Nagai, T., Somfai, T., & Parnpai, R. (2011). In vitro development of vitrified buffalo oocytes following parthenogenetic activation and intracytoplasmic sperm injection. Theriogenology, 75(9), 1652-1660. https://doi.org/10.1016/j.theriogenology.2010.12.028
Liang, Y., Rakwongrit, D., Phermthai, T., Somfai, T., Nagai, T., & Parnpai, R. (2012). Cryopreservation of immature buffalo oocytes: effects of cytochalasin B pretreatment on the efficiency of cryotop and solid surface vitrification methods. Animal Science Journal, 83(9), 630-638. https://doi.org/10.1111/j.1740-0929.2012.01013.x
Lowther, K. M., Weitzman, V. N., Maier, D., & Mehlmann, L. M. (2009). Maturation, fertilization, and the structure and function of the endoplasmic reticulum in cryopreserved mouse oocytes. Biology of Reproduction, 81(1), 147-154. https://doi.org/10.1095/biolreprod.108.072538
Mahmoud, K. G., Scholkamy, T. H., Ahmed, Y. F., Seidel, G. E., Jr, & Nawito, M. F. (2010). Effect of different combinations of cryoprotectants on in vitro maturation of immature buffalo (Bubalus bubalis) oocytes vitrified by straw and open-pulled straw methods. Reproduction in Domestic Animals, 45(4), 565-571. https://doi.org/10.1111/j.1439-0531.2008.01293.x
Mahmoud, K., Scholkamy, T., & Darwish, S. (2015). Improvement of vitrification of in vitro produced buffalo embryos with special reference to sex ratio following vitrification. Iranian Journal of Veterinary Research, 16(4), 325-330.
Manjunatha, B. M., Ravindra, J. P., Gupta, P. S., Devaraj, M., Honnappa, T. G., & Krishnaswamy, A. (2009). Post-thaw development of in vitro produced buffalo embryos cryopreserved by cytoskeletal stabilization and vitrification. Journal of Veterinary Science, 10(2), 153-156. https://doi.org/10.4142/jvs.2009.10.2.153
Mondadori, R. G., Santin, T. R., Fidelis, A. A., Name, K. P., da Silva, J. S., Rumpf, R., & Báo, S. N. (2010). Ultrastructure of in vitro oocyte maturation in buffalo (Bubalus bubalis). Zygote, 18(4), 309-314.
Moussa, M., Yang, C. Y., Zheng, H. Y., Li, M. Q., Yu, N. Q., Yan, S. F., Huang, J. X., & Shang, J. H. (2019). Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology, 125, 317-323. https://doi.org/10.1016/j.theriogenology.2018.11.013
Muñoz, M., Uyar, A., Correia, E., Díez, C., Fernandez-Gonzalez, A., Caamaño, J. N., Martínez-Bello, D., Trigal, B., Humblot, P., Ponsart, C., Guyader-Joly, C., Carrocera, S., Martin, D., Marquant Le Guienne, B., Seli, E., & Gomez, E. (2014). Prediction of pregnancy viability in bovine in vitro-produced embryos and recipient plasma with Fourier transform infrared spectroscopy. Journal of Dairy Science, 97(9), 5497-5507. https://doi.org/10.3168/jds.2014-8067
Nedambale, T. L., Dinnyés, A., Yang, X., & Tian, X. C. (2004). Bovine blastocyst development in vitro: timing, sex, and viability following vitrification. Biology of Reproduction, 71(5), 1671-1676. https://doi.org/10.1095/biolreprod.104.027987
Panyaboriban, S., Tharasanit, T., Chankitisakul, V., Swangchan-Uthai, T., & Techakumphu, M. (2018). Treatment with chemical delipidation forskolin prior to cryopreservation improves the survival rates of swamp buffalo (Bubalus bubalis) and bovine (Bos indicus) in vitro produced embryos. Cryobiology, 84, 46-51. https://doi.org/10.1016/j.cryobiol.2018.08.003
Parnpai, R., Liang, Y., Ketudat-Cairns, M., Somfai, T., & Nagai, T. (2016). Vitrification of buffalo oocytes and embryos. Theriogenology, 86(1), 214-220. https://doi.org/10.1016/j.theriogenology.2016.04.034
Paschoal, D. M., Sudano, M. J., Guastali, M. D., Dias Maziero, R. R., Crocomo, L. F., Oña Magalhães, L. C., da Silva Rascado, T., Martins, A., & da Cruz Landim-Alvarenga, F. (2014). Forskolin effect on the cryosurvival of in vitro-produced bovine embryos in the presence or absence of fetal calf serum. Zygote, 22(2), 146-157. https://doi.org/10.1017/S0967199412000354
Perea, F.G., & Inskeep, E. K. (2008). Infertility associated with the duration of luteal phasein postpartum cows. Archivos Latinoamericanos de Producción Animal, 16(3), 175-185.
Prentice, J. R., & Anzar, M. (2010). Cryopreservation of Mammalian oocyte for conservation of animal genetics. Veterinary Medicine International, 2011, 146405. https://doi.org/10.4061/2011/146405
Presicce, G.A. (2017). Embryo cryopreservation and pregnancy to term: The Buffalo (Bubalus bubalis) - Production and Research. Bentham eBooks imprint, Bentham Science Publishers-Sharjah, UAE.
Qin, N., Zhou, Z., Zhao, W., Zou, K., Shi, W., Yu, C., Liu, X., Dong, Z., Mao, Y., Liu, X., Sheng, J., Ding, G., Wu, Y., & Huang, H. (2021). Abnormal Glucose Metabolism in Male Mice Offspring Conceived by in vitro Fertilization and Frozen-Thawed Embryo Transfer. Frontiers in Cell and Developmental Biology, 9, 637781. https://doi.org/10.3389/fcell.2021.637781
Reader, K. L., Cox, N. R., Stanton, J. A., & Juengel, J. L. (2015). Effects of acetyl-L-carnitine on lamb oocyte blastocyst rate, ultrastructure, and mitochondrial DNA copy number. Theriogenology, 83(9), 1484-1492. https://doi.org/10.1016/j.theriogenology.2015.01.028
Reader, K. L., Stanton, J. L., & Juengel, J. L. (2017). The Role of Oocyte Organelles in Determining Developmental Competence. Biology, 6(3), 35. https://doi.org/10.3390/biology6030035
Saliba, W. P., Gimenes, L. U., Drumond, R. M., Bayão, H., Di Palo, R., Gasparrini, B., Rubessa, M., Baruselli, P. S., Sales, J., Bastianetto, E., Leite, R. C., & Alvim, M. (2020). "Which Factors Affect Pregnancy Until Calving and Pregnancy Loss in Buffalo Recipients of in vitro Produced Embryos?". Frontiers in Veterinary Science, 7, 577775. https://doi.org/10.3389/fvets.2020.577775
Saliba, W., Gimenes, L., Drumond, R., Bayão, H., Alvim, M., Baruselli, P., & Gasparrini, B. (2013) Efficiency of OPU-IVEP-ET of Fresh and Vitrified Embryos in Buffaloes. Buffalo Bulletin, 32, 385-388. http://hdl.handle.net/11449/113085
Sanches, B. V., Marinho, L. S., Filho, B. D., Pontes, J. H., Basso, A. C., Meirinhos, M. L., Silva-Santos, K. C., Ferreira, C. R., & Seneda, M. M. (2013). Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification. Theriogenology, 80(4), 372-377. https://doi.org/10.1016/j.theriogenology.2013.04.026
Sepand, M. R., Razavi-Azarkhiavi, K., Omidi, A., Zirak, M. R., Sabzevari, S., Kazemi, A. R., & Sabzevari, O. (2016). Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat. Biological Trace Element Research, 171(1), 107-115.
Sharma, R. K., Jerome, A., & Purohit, G.N. (2014). Reproductive Physiology of the Male and Female Buffalo. In Bubaline Theriogenology (Ed Purohit G. N.). International Veterinary Information Service, United States.
Sharma, G. T., & Loganathasamy, K. (2007). Effect of meiotic stages during in vitro maturation on the survival of vitrified-warmed buffalo oocytes. Veterinary Research Communications, 31(7), 881-893. https://doi.org/10.1007/s11259-007-0059-7
Shirazi, A., Naderi, M. M., Hassanpour, H., Heidari, M., Borjian, S., Sarvari, A., & Akhondi, M. M. (2016). The effect of ovine oocyte vitrification on expression of subset of genes involved in epigenetic modifications during oocyte maturation and early embryo development. Theriogenology, 86(9), 2136-2146. https://doi.org/10.1016/j.theriogenology.2016.07.005
Silva, A. F. B., Lima, L. F., Figueiredo, J. R. (2021). Strategies for improving follicular culture efficiency in vitro: Importance of medium supplementation and study of epigenetic changes. Research, Society and Development, 10(9), e22910918022. https://doi.org/10.33448/rsd-v10i9.18022.
Silva, A. R. N., Marques, T. C., Santos, E. C. S., Diesel, T. O., Macedo, I. M., Teixeira, R. C., Martins, C. F., Alves, B. G., & Gambarini, M. L. (2021). Resveratrol-supplemented holding or re-culture media improves viability of fresh or vitrified-warmed in vitro-derived bovine embryos. Research, Society and Development, 10(14), e367101422097. https://doi.org/10.33448/rsd-v10i14.22097
Silveira, M. M., Marques, T. C., Silva, M. A. P., & Leão, K. M. (2020). Development stage at packaging affects viability of in vitro produced bovine embryos. Research, Society and Development, 9, (6), e134963615. https://doi.org/10.33448/rsd-v9i6.3615
Soliman, W. T., El-Naby, A. S. A., Mahmoud, K. G., El-Khawagah, A. R., Kandiel, M. M., Abouel-Roos, M. E., Abdel-Ghaffar, A. E., & El Azab, A. I. (2018). Effect of buffalo bull breeds on developmental competence and vitrification of in vitro produced embryos. Asian Pacific Journal of Reproduction, 7, 270-273. http://www.apjr.net/text.asp?2018/7/6/270/246346
Stein, P., Savy, V., Williams, A. M., & Williams, C. J. (2020). Modulators of calcium signalling at fertilization. Open Biology, 10(7), 200118. https://doi.org/10.1098/rsob.200118
Sudano, M. J., Santos, V. G., Tata, A., Ferreira, C. R., Paschoal, D. M., Machado, R., Buratini, J., Eberlin, M. N., & Landim-Alvarenga, F. D. (2012). Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Biology of Reproduction, 87(6), 130. https://doi.org/10.1095/biolreprod.112.102897
Techakumphu, M., Sukavong, Y., Yienvisavakul, V., Buntaracha, B., Pharee, S., Intaramongkol, S., Apimeteetumrong, M., & Intaramongkol, J. (2001). The transfer of fresh and frozen embryos in an elite swamp buffalo herd. The Journal of Veterinary Medical Science, 63(8), 849-852. https://doi.org/10.1292/jvms.63.849
Tharasanit, T., & Thuwanut, P. (2021). Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals: an open access journal from MDPI, 11(10), 2949. https://doi.org/10.3390/ani11102949
Wani, N. A., Maurya, S. N., Misra, A. K., Saxena, V. B., & Lakhchaura, B. D. (2004a). Effect of cryoprotectants and their concentration on in vitro development of vitrified-warmed immature oocytes in buffalo (Bubalus bubalis). Theriogenology, 61(5), 831-842. https://doi.org/10.1016/j.theriogenology.2003.06.002
Wani, N. A., Misra, A. K., & Maurya, S. N. (2004b). Maturation rates of vitrified-thawed immature buffalo (Bubalus bubalis) oocytes: effect of different types of cryoprotectants. Animal Reproduction Science, 84(3-4), 327-335. https://doi.org/10.1016/j.anireprosci.2004.02.007
Xu, H. Y., Geng, S. S., Li, T. T., Fu, Q., Lu, S. S., Liang, X. W., Lu, Y. Q., Zhang, M., Yang, X. G., & Lu, K. H. (2019). Maturation of buffalo oocytes in vitro with acetyl-L-carnitine improves cryotolerance due to changes in mitochondrial function and the membrane lipid profile. Reproduction, Fertility, and Development, 31(2), 386-394. https://doi.org/10.1071/RD18102
Zhu, W., Zheng, J., Wen, Y., Li, Y., Zhou, C., & Wang, Z. (2020). Effect of embryo vitrification on the expression of brain tissue proteins in mouse offspring. Gynecological Endocrinology, 36(11), 973-977. https://doi.org/10.1080/09513590.2020.1734785
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Satish Kumar; Maiana Silva Chaves; Ana Flávia Bezerra Silva; William Gomes Vale; Natanael Aguiar Braga Negreiros; Irving Mitchell Laines Arcce; Luciana Magalhães Melo; Vicente José de Figueirêdo Freitas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.