Hacia un Modelo de Clasificación usando CNN y Wavelets aplicado a imágenes de TC de COVID-19
DOI:
https://doi.org/10.33448/rsd-v11i5.27919Palabras clave:
Redes Neuronales Convolucionales; COVID-19; Wavelets; Imágenes de TC; WCN-COVID.Resumen
A fines de 2019, surgió un nuevo tipo de coronavirus en China y se denominó SARS-CoV-2. Primero impactó en el país donde surgió y luego se extendió por todo el mundo. El SARS-CoV-2 es la causa de la enfermedad COVID-19 que deja impresiones características en las imágenes de TC de tórax de pacientes infectados. En este artículo, proponemos un modelo de clasificación, basado en CNN y transformada wavelet, para clasificar imágenes de pacientes con COVID-19. Se llamó WCNN-COVID. El modelo fue aplicado y probado en repositorios de imágenes TC abiertos y privados. Se procesaron 25534 imágenes de 200 pacientes. La matriz de confusión se generó calculando la Precisión (ACC), la Sensibilidad (Sen) y la Especificidad (Sp). La curva característica operativa del receptor (ROC) y el área bajo la curva (AUC) también se trazaron y utilizaron para la evaluación. Los resultados métricos fueron ACC = 0,9950, Sen = 99,16 % y Sp = 99,89 %.
Citas
Abbas, A., Abdelsamea, M., & Gaber, M. (2020, 4). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. https://doi.org/10.1101/2020.03.30.20047456
Aggarwal, C. C., & others. (2018). Neural networks and deep learning. Springer https://doi.org/10.1007/978-3-319-94463-0
Balas, V. E., Roy, S. S., Sharma, D., & Samui, P. (2019). Handbook of deep learning applications (Vol. 136). Springer. https://doi.org/10.1007/978-3-030-11479-4
Barstugan, M., Ozkaya, U., & Ozturk, S. (2020). Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv preprint arXiv:2003.09424.
Bassi, P. R., & Attux, R. (2020). A Deep Convolutional Neural Network for COVID-19 Detection Using Chest X-Rays. arXiv preprint arXiv:2005.01578.
Chen(a), H., Guo, S., Hao, Y., Fang, Y., Fang, Z., Wu, W., & Li, S. (2021). Auxiliary Diagnosis for COVID-19 with Deep Transfer Learning. Journal of Digital Imaging, 1–11.
Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., et al. (2020). Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv.
Chollet, F. (2016). Building powerful image classification models using very little data. Keras Blog. Retrieved from https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
Cui, J., Li, F., & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17, 181–192. https://doi.org/10.1038/s41579-018-0118-9
da Costa Junior, C. A., & Patrocinio, A. C. (2019). Performance Evaluation of Denoising Techniques Applied to Mammograms of Dense Breasts. XXVI Brazilian Congress on Biomedical Engineering, (pp. 369–374).
Dai, W.-c., Zhang, H.-w., Yu, J., Xu, H.-j., Chen, H., Luo, S.-p., et al., (2020). CT imaging and differential diagnosis of COVID-19. Canadian Association of Radiologists Journal, 71, 195–200. https://doi.org/10.1177/0846537120913033
dos S Ribeiro, C., van Roode, M. Y., Haringhuizen, G. B., Koopmans, M. P., Claassen, E., & van de Burgwal, L. H. (2018). How ownership rights over microorganisms affect infectious disease control and innovation: A root-cause analysis of barriers to data sharing as experienced by key stakeholders. PLoS One, 13, e0195885. https://doi.org/10.1371/journal.pone.0195885
Guo, T., Seyed Mousavi, H., Huu Vu, T., & Monga, V. (2017). Deep wavelet prediction for image super-resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (pp. 104–113).
He, K., & Sun, J. (2015). Convolutional neural networks at constrained time cost. Proceedings of the IEEE conference on computer vision and pattern recognition, (pp. 5353–5360).
Ishitaki, T., Oda, T., & Barolli, L. (2016). A neural network based user identification for Tor networks: Data analysis using Friedman test. 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), (pp. 7–13). https://doi.org/10.1109/waina.2016.143
Jansen, M. (2012). Noise reduction by wavelet thresholding (Vol. 161). Springer Science & Business Media. https://doi.org/10.1007/978-1-4613-0145-5
Khatami, A., Khosravi, A., Nguyen, T., Lim, C. P., & Nahavandi, S. (2017). Medical image analysis using wavelet transform and deep belief networks. Expert Systems with Applications, 86, 190–198. https://doi.org/10.1016/j.eswa.2017.05.073
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, (pp. 1097–1105).
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521, 436–444. https://doi.org/10.1038/nature14539
Maranhão, A. (2020). COVID-19 CT: scans20 CT scans and expert segmentations of patients with COVID-19. Retrieved 02 02, 2021, from Kaggle: https://www.kaggle.com/andrewmvd/covid19-ct-scans
Martin, D. R., Hanson, J. A., Gullapalli, R. R., Schultz, F. A., Sethi, A., & Clark, D. P. (2020). A deep learning convolutional neural network can recognize common patterns of injury in gastric pathology. Archives of pathology & laboratory medicine, 144, 370–378. https://doi.org/10.5858/arpa.2019-0004-OA~
Merry, R. J. (2005). Wavelet theory and applications: a literature study. DCT rapporten, 2005.
MosMedData. (2020). MosMedData: COVID19_1000 Dataset:Chest CT Scans with COVID-19. Retrieved from https://mosmed.ai/en/
Narin, A., Kaya, C., & Pamuk, Z. (2020). Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. arXiv preprint arXiv:2003.10849.
Ozkaya, U., Ozturk, S., & Barstugan, M. (2020). Coronavirus (COVID-19) Classification using Deep Features Fusion and Ranking Technique. arXiv preprint arXiv:2004.03698.
Ozturk, S., Ozkaya, U., & Barstugan, M. (2020). Classification of coronavirus images using shrunken features. medRxiv. https://doi.org/10.1101/2020.04.03.20048868
PINHEIRO, J. I., CUNHA, S. B., CARVAJAL, S. R., & GOMES, G. C. (2009). Estatı́stica Básica: A arte de trabalhar com dados. Rio de Janeiro–RJ. Estatı́stica Básica: A arte de trabalhar com dados. Rio de Janeiro–RJ. Editora Elsevier.
Ponti, M. A., & da Costa, G. B. (2018). Como funciona o deep learning. arXiv preprint arXiv:1806.07908.
Rafael, C. (2006). Gonzalez, and Richard E. Woods. Digital image processing.
Ravı̀, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G.-Z. (2016). Deep learning for health informatics. IEEE journal of biomedical and health informatics, 21, 4–21. https://doi.org/10.1109/JBHI.2016.2636665
Ribeiro, C. d., Koopmans, M. P., & Haringhuizen, G. B. (2018). Threats to timely sharing of pathogen sequence data. Science, 362, 404–406. https://doi.org/10.1126/science.aau5229
Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., & Mononen, J. (2018). Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural processes, 148, 56–62. https://doi.org/10.1016/j.beproc.2018.01.004
Sethy, P. K., & Behera, S. K. (2020). Detection of coronavirus disease (covid-19) based on deep features. Preprints, 2020030300, 2020. https://doi.org//10.20944/preprints202003.0300.v1
Sherry, S. T., Ward, M.-H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic acids research, 29, 308–311. https://doi.org/10.1093/nar/29.1.308
Shirazi, A. Z., Chabok, S. J., & Mohammadi, Z. (2018). A novel and reliable computational intelligence system for breast cancer detection. Medical & biological engineering & computing, 56, 721–732. https://doi.org/10.1007/s11517-017-1721-z
Simon, J. H., Claassen, E., Correa, C. E., & Osterhaus, A. D. (2005). Managing severe acute respiratory syndrome (SARS) intellectual property rights: the possible role of patent pooling. Bulletin of the World Health Organization, 83, 707–710.
Skansi, S. (2018). Introduction to Deep Learning: from logical calculus to artificial intelligence. Springer. doi:https://doi.org/10.1007/978-3-319-73004-2
Summers, R. (2020). NIH Clinical Center:dataset of 32,000 CT images. Retrieved from https://www.nih.gov/news-events/news-releases/nih-clinical-center-releases-dataset-32000-ct-images
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, (pp. 1–9). https://doi.org/10.1109/CVPR.2015.7298594
Wang(d), G., Liu, X., Li, C., Xu, Z., Ruan, J., Zhu, H., & Zhang, S. (2020). A Noise-robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions from CT Images_. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2020.3000314
Wang, L., & Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images. arXiv preprint arXiv:2003.09871.
Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., & Zheng, C. (2020). A Weakly-supervised Framework for COVID-19 Classification and Lesion Localization from Chest CT. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/tmi.2020.2995965
Wani, M. A., Bhat, F. A., Afzal, S., & Khan, A. I. (2020). Advances in deep learning (Vol. 57). Springer. https://doi.org/10.1007/978-981-13-6794-6
Weiss, S. R., & Leibowitz, J. L. (2011). Coronavirus pathogenesis. In Advances in virus research (Vol. 81, pp. 85–164). Elsevier. https://doi.org/10.1016/B978-0-12-385885-6.00009-2
Williams, T., & Li, R. (2016). Advanced image classification using wavelets and convolutional neural networks. 2016 15th IEEE international conference on machine learning and applications (ICMLA), (pp. 233–239). https://doi.org/10.1109/icmla.2016.0046
Wu, J. (2013). Institute of Genomics, Chinese Academy of Science, China National Center for Bioinformation & National Genomics Data Center. Institute of Genomics, Chinese Academy of Science, China National Center for Bioinformation & National Genomics Data Center. China. Retrieved from https://bigd.big.ac.cn/ncov/?lang=en
Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., et al. (2020). Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. European Journal of Radiology, 109041.
Yang, S., Jiang, L., Cao, Z., Wang, L., Cao, J., Feng, R., & Shan, F. (2020). Deep learning for detecting corona virus disease 2019 (COVID-19) on high-resolution computed tomography: a pilot study. Annals of Translational Medicine, 8. https://doi.org/10.21037/atm.2020.03.132
Yang, W., Cao, Q., Qin, L., Wang, X., Cheng, Z., Pan, A., & others. (2020). Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. Journal of Infection. https://doi.org/10.1016/j.jinf.2020.02.016
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. European conference on computer vision, (pp. 818–833). https://doi.org/10.1007/978-3-319-10590-1_53
Zhang, J., Xie, Y., Li, Y., Shen, C., & Xia, Y. (2020). Covid-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint arXiv:2003.12338.
Zhu, N., Zhang, D., Wang, W., & others. (n.d.). China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019 [published January 24, 2020]. N Engl J Med. doi:https://doi.org/10.1056/NEJMoa2001017
Zimmerman, D. W., & Zumbo, B. D. (1993). Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks. The Journal of Experimental Education, 62, 75–86. https://doi.org/10.1080/00220973.1993.9943832
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Pedro Moises de Sousa; Pedro Cunha Carneiro; Gabrielle Macedo Pereira; Mariane Modesto Oliveira; Carlos Aberto da Costa Junior; Luis Vinicius de Moura; Christian Mattjie; Ana Maria da Silva; Túlio Augusto Alves Macedo; Ana Claudia Patrocinio
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.