Aplicación de Portabilidad de Modelos para predicción de desempeño de estudiantes de pregrado usando Transferencia de Aprendizaje
DOI:
https://doi.org/10.33448/rsd-v11i5.27938Palabras clave:
Transferencia de Aprendizaje; Aprendizaje Automático; Rendimiento Estudiantil; Moodle.Resumen
Uno de los grandes retos de la educación en los últimos años ha sido predecir con precisión y fiabilidad el rendimiento de los alumnos para poder aplicar distintas estrategias que les ayuden a afrontar sus deficiencias académicas. Basado en este hecho, el objetivo principal de este trabajo es aplicar un enfoque de transferencia de aprendizaje en los registros del sistema de gestión de aprendizaje (i.e., Moodle) para obtener una buena portabilidad del modelo y, con eso, predecir el rendimiento de los estudiantes de pregrado. Se implementaron dos escenarios diferentes considerando las actividades de cada curso utilizado en Moodle, el primer escenario, con el grupo de cursos similares de la misma especialidad, y el segundo escenario, con el grupo de niveles de uso de actividades. Se realizó un análisis empírico para evaluar el rendimiento de los modelos creados con tres algoritmos de clasificación bien conocidos (i.e., Árbol de Decisión, Bosque Aleatorio y Naive Bayes). Además, las métricas AUC ROC, F-Measure, Precision y Recall se utilizaron como medidas predictivas para elegir los mejores modelos y evaluar su rendimiento de portabilidad a los otros cursos. Los resultados experimentales nos animan a afirmar que es posible aplicar la transferencia de modelos predictivos a un mismo grupo de cursos en la mayoría de los casos.
Citas
Ahmed, D. M., Abdulazeez, A. M., Zeebaree, D. Q., & Ahmed, F. Y. (2021, June). Predicting University's Students Performance Based on Machine Learning Techniques. In 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS) (pp. 276-281). IEEE.
Aleksandrova, Y. (2019). Predicting Students Performance in Moodle Platforms Using Machine Learning Algorithms. In Conferences of the department Informatics (No. 1, pp. 177-187). Publishing house Science and Economics Varna.
Ayala, J. C., & Manzano, G. (2018). Academic performance of first-year university students: The influence of resilience and engagement. Higher Education Research & Development, 37(7), 1321-1335.
Barros, R. C., De Carvalho, A. C., & Freitas, A. A. (2015). Automatic design of decision-tree induction algorithms. Springer.
Boyer, S., & Veeramachaneni, K. (2015, June). Transfer learning for predictive models in massive open online courses. In International conference on artificial intelligence in education (pp. 54-63). Springer, Cham.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Büchner, A. (2016). Moodle Administration. An administrator's guide of configuring, securing, customizing and extending Moodle. Packt Publishing, Birmingham, S, 9, 41.
Davidson, R. A. (2002). Relationship of study approach and exam performance. Journal of Accounting Education, 20(1), 29-44.
Ding, M., Wang, Y., Hemberg, E., & O’Reilly, U. M. (2019, March). Transfer learning using representation learning in massive open online courses. In Proceedings of the 9th international conference on learning analytics & knowledge (pp. 145-154).
Dougiamas, M., & Taylor, P. (2003). Moodle: Using learning communities to create an open source course management system. In EdMedia+ innovate learning (pp. 171-178). Association for the Advancement of Computing in Education (AACE).
Drummond, C. (2006, July). Machine learning as an experimental science (revisited). In AAAI workshop on evaluation methods for machine learning (pp. 1-5).
Fernández-Berrocal, P., & Checa, P. (2016). Emotional intelligence and cognitive abilities. Frontiers in psychology, 7, 955.
Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems?. The journal of machine learning research, 15(1), 3133-3181.
Hao, J., Gan, J., & Zhu, L. (2022). MOOC performance prediction and personal performance improvement via Bayesian network. Education and Information Technologies, 1-24.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
Hunt, X. J., Kabul, I. K., & Silva, J. (2017, August). Transfer learning for education data. In Proceedings of the ACM SIGKDD Conference, El Halifax, NS, Canada (Vol. 17).
López-Zambrano, J., Lara, J. A., & Romero, C. (2020). Towards portability of models for predicting students’ final performance in university courses starting from moodle logs. Applied Sciences, 10(1), 354.
López-Zambrano, J., Lara, J. A., & Romero, C. (2021). Improving the portability of predicting students’ performance models by using ontologies. Journal of Computing in Higher Education, 1-19.
Mangini, C. G., Lima, N. D. da S., & Nääs, I. de A. . (2021). Thermal mapp routing in pharmaceutical products transportation using machine learning approach: a systematic review. Research, Society and Development, 10(16), e170101623665. https://doi.org/10.33448/rsd-v10i16.23665
Mascarenhas, T. A. T. ., Moriel Junior , J. G. ., Gomes, R. de S. R. ., & Mello, G. J. (2020). Application of machine learning algorithms in the Classification of Specialized Knowledge of Physics Teachers. Research, Society and Development, 9(11), e86191110584. https://doi.org/10.33448/rsd-v9i11.10584
Neves, A. R. N. das, Okada, H. K. R., & Shitsuka, R. (2019). Gesture Recognition in Images Using Neural Networks. Research, Society and Development, 8(11), e278111470. https://doi.org/10.33448/rsd-v8i11.1470
Nguyen, V. A., Nguyen, Q. B., & Nguyen, V. T. (2018, August). A model to forecast learning outcomes for students in blended learning courses based on learning analytics. In Proceedings of the 2nd International Conference on E-Society, E-Education and E-Technology (pp. 35-41).
Ossani, P. C., Rossoni, D. F. ., Cirillo, M. Ângelo ., & Borém, F. M. . (2021). Classification of specialty coffees using machine learning techniques . Research, Society and Development, 10(5), e13110514732. https://doi.org/10.33448/rsd-v10i5.14732
Palma, L. C., de Oliveira, L. M., & Viacava, K. R. (2011). Sustainability in Brazilian federal universities. International Journal of Sustainability in Higher Education.
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359.
Piña, A. A. (2012). An overview of learning management systems. Virtual Learning Environments: Concepts, methodologies, tools and applications, 33-51.
Quinn, R. J., & Gray, G. (2020). Prediction of student academic performance using Moodle data from a Further Education setting. Irish Journal of Technology Enhanced Learning, 5(1).
Raga Jr, R. C., & Raga, J. D. (2017). Monitoring Class Activity and Predicting Student Performance Using Moodle Action Log Data. International Journal of Computing Sciences Research, 1(3), 1-16.
Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27.
Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384.
Sarkar, D., Bali, R., & Ghosh, T. (2018). Hands-On Transfer Learning with Python: Implement advanced deep learning and neural network models using TensorFlow and Keras. Packt Publishing Ltd.
Teles, W. de S. ., Machado, A. P. ., Cantos Júnior, P. C. C. ., Melo, C. M. de ., Silva, M. H. S. ., Silva, R. N. da ., & Jeraldo, V. de L. S. . (2021). Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data. Research, Society and Development, 10(4), e19310413879. https://doi.org/10.33448/rsd-v10i4.13879
Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., & Ragos, O. (2020). Transfer learning from deep neural networks for predicting student performance. Applied Sciences, 10(6), 2145.
Ülker, D., & Yılmaz, Y. (2016). Learning Management Systems and Comparison of Open Source Learning Management Systems and Proprietary Learning Management Systems. Journal of Systems Integration (1804-2724), 7(2).
Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big data, 3(1), 1-40.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Carlos Antonio R. Beltran; João Carlos Xavier Júnior; Cephas Alves da Silveira Barreto; Arthur Costa Gorgônio; Song Jong Márcio Simioni da Costa
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.