Investigación de cianolíquenes: un análisis bibliométrico de 1991 a 2022

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i6.28764

Palabras clave:

ISI Web of Science; Hongos formadores de líquenes; Cianobacterias; Extracción de textos; Enseñanza en Sistemas de Información.

Resumen

En el presente estudio se realizó un análisis bibliométrico sobre cianolíquenes, utilizando como base de datos el ISI Web of Science (WoS). Se recuperaron un total de 244 documentos, publicados en el período de 1991 a 2022, y 79 estudios publicados de 2016 a 2022. Considerando todo el período analizado, hubo un aumento de estudios con cianolíquenes, siendo 2013 el año más productivo (21 estudios), seguido de 2019 (18). Los estudios fueron realizados por científicos de 47 países, siendo Estados Unidos, Canadá, Alemania, Noruega y Suecia los más productivos. La red bibliométrica de palabras clave se agrupó en cuatro clases: la primera y más aislada incluyó taxonomía, evolución y selectividad de socios simbióticos, mientras que las otras tres clases se asociaron con ecología, fisiología, diversidad y conservación de cianolíquenes, esta última ordenada de manera más estrecha. relación, lo que demuestra que estos aspectos a menudo se estudian juntos. Analizando solo el período de 2016 a 2022, la mayoría de los estudios citados muestran un interés creciente por estudiar la fijación de nitrógeno, la ecología funcional, la microbiota asociada y la macroevolución de los cianolíquenes. El análisis bibliométrico fue efectivo para demostrar el estado del arte del estudio de los cianolíquenes en un contexto global, y destacó los principales temas de interés para la comunidad científica, así como los países, investigadores, estudios y revistas que se destacaron.

Citas

Abas, A. (2021). A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecological Indicators, 121, 107197. https://doi.org/https://doi.org/10.1016/j.ecolind.2020.107197

Adams, D. G., Duggan, P. S., & Jackson, O. (2012). Cyanobacterial Symbioses BT - Ecology of Cyanobacteria II: Their Diversity in Space and Time (B. A. Whitton (ed.); pp. 593–647). Springer Netherlands. https://doi.org/10.1007/978-94-007-3855-3_23

Almendras, K., García, J., Carú, M., & Orlando, J. (2018). Nitrogen-fixing bacteria associated with Peltigera cyanolichens and Cladonia chlorolichens. Molecules, 23(12), 3077.

Aragón, G., Martínez, I., Izquierdo, P., Belinchón, R., & Escudero, A. (2010). Effects of forest management on epiphytic lichen diversity in Mediterranean forests. Applied Vegetation Science, 13(2), 183–194. https://doi.org/https://doi.org/10.1111/j.1654-109X.2009.01060.x

Bargagli, R., & Mikhailova, I. (2002). Accumulation of Inorganic Contaminants. Monitoring with Lichens — Monitoring Lichens, 65–84. https://doi.org/10.1007/978-94-010-0423-7_6

Bellenger, J. P., Darnajoux, R., Zhang, X., & Kraepiel, A. M. L. (2020). Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry, 149(1), 53–73. https://doi:10.1007/s10533-020-00666-7

Belinchón, R., Yahr, R., & Ellis, C. J. (2015). Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography, 38(8), 762–768. https://doi.org/https://doi.org/10.1111/ecog.01258

Belnap, J., & Harper, K. T. (1995). Influence of cryptobiotic soil crusts on elemental content of tissue of two desert seed plants. Arid Soil Research and Rehabilitation, 9(2), 107–115. https://doi.org/10.1080/15324989509385879

Benítez, A., Aragón, G., González, Y., & Prieto, M. (2018). Functional traits of epiphytic lichens in response to forest disturbance and as predictors of total richness and diversity. Ecological Indicators, 86, 18–26. https://doi.org/https://doi.org/10.1016/j.ecolind.2017.12.021

Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K. I., Salisch, M., Reisser, W., & Weber, B. (2009). Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology, 57(2), 229–247. https://doi.org/10.1007/s00248-008-9449-9

Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., & Oquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews : MMBR, 62(3), 667–683. https://doi.org/10.1128/MMBR.62.3.667-683.1998

Cardós, J. L. H., Martínez, I., Calvo, V., & Aragón, G. (2016). Epiphyte communities in Mediterranean fragmented forests: importance of the fragment size and the surrounding matrix. Landscape Ecology, 31(9), 1975–1995. https://doi.org/10.1007/s10980-016-0375-9

Carvalho Neta, R. N. F., Sousa, D. B. P., Barros, M. F. de S., Nunes, K. B., Torres, H. S., Assis, E. B. V., Farias, L. F., & Turri, R. de J. G. (2021). Potential uses of essential oils in environmental remediation: A review. Research, Society and Development, 10(7), e3210716146. https://doi.org/10.33448/rsd-v10i7.16146

Chagnon, P.-L., Magain, N., Miadlikowska, J., & Lutzoni, F. (2019). Species diversification and phylogenetically constrained symbiont switching generated high modularity in the lichen genus Peltigera. Journal of Ecology, 107(4), 1645–1661. https://doi.org/https://doi.org/10.1111/1365-2745.13207

Chagnon, P. L., Magain, N., Miadlikowska, J., & Lutzoni, F. (2018). Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus Peltigera. Oecologia, 187(3), 767–782. https://doi.org/10.1007/s00442-018-4159-6

Darnajoux, R., Constantin, J., Miadlikowska, J., Lutzoni, F., & Bellenger, J. (2014). Is vanadium a biometal for boreal cyanolichens? New Phytologist, 202(3), 765–771.

Darnajoux, R., Magain, N., Renaudin, M., Lutzoni, F., Bellenger, J.-P., & Zhang, X. (2019). Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. Proceedings of the National Academy of Sciences, 116(49), 24682–24688. https://doi.org/10.1073/pnas.1913314116

Darnajoux, R., Zhang, X., McRose, D. L., Miadlikowska, J., Lutzoni, F., Kraepiel, A. M. L., & Bellenger, J. P. (2017). Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytologist, 213(2), 680–689.

Fernandes, T., Hacon, S. de S., Novais, J. W. Z., Sguarezi, S. B., da Silva, C. J., Alcântara, L. C. S., Curvo, A. D., & Fernandes, T. (2019). Air pollution and effects on the health of children in the Amazon region of para: a bibliometric Analysis. Research, Society and Development, 8(4), e4984907. https://doi.org/10.33448/rsd-v8i4.907

Flores-Gomes, G., Lopes, R. F. ., Oliveira, V. de, & Vagetti, G. C. (2022). Health Education for the Elderly: a bibliometric review of scientific production from 2017 to 2021. Research, Society and Development, 11(3), e43911326884. https://doi.org/10.33448/rsd-v11i3.26884

Golovko, T. K., Shelyakin, M. A., & Pystina, T. N. (2020). Ecological and biological, and functional traits of lichens in Taiga zone of European Northeast of Russia. Theoretical and Applied Ecology, 1, 6.

Grube, M., Cardinale, M., de Castro, J. V., Müller, H., & Berg, G. (2009). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME Journal, 3(9), 1105–1115. https://doi.org/10.1038/ismej.2009.63

Grube, M., Cernava, T., Soh, J., Fuchs, S., Aschenbrenner, I., Lassek, C., Wegner, U., Becher, D., Riedel, K., Sensen, C. W., & Berg, G. (2015). Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. The ISME Journal, 9(2), 412–424. https://doi.org/10.1038/ismej.2014.138

Gustafsson, J. P. (2019). Vanadium geochemistry in the biogeosphere –speciation, solid-solution interactions, and ecotoxicity. Applied Geochemistry, 102, 1–25. https://doi.org/https://doi.org/10.1016/j.apgeochem.2018.12.027

Harper, K. T., & Belnap, J. (2001). The influence of biological soil crusts on mineral uptake by associated vascular plants. Journal of Arid Environments, 47(3), 347–357. https://doi.org/10.1006/jare.2000.0713

Harper, K. T., & Pendleton, R. L. (1993). Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? The Great Basin Naturalist, 59–72.

Hawksworth, D. L., & Lücking, R. (2017). Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiology Spectrum, 5(4). https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

Hedenås, H., & Ericson, L. (2000). Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biological Conservation, 93(1), 43–53. https://doi.org/https://doi.org/10.1016/S0006-3207(99)00113-5

Hodkinson, B. P., Gottel, N. R., Schadt, C. W., & Lutzoni, F. (2012). Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environmental Microbiology, 14(1), 147–161. https://doi.org/10.1111/j.1462-2920.2011.02560.x

Jönsson, M. T., Ruete, A., Kellner, O., Gunnarsson, U., & Snäll, T. (2017). Will forest conservation areas protect functionally important diversity of fungi and lichens over time? Biodiversity and Conservation, 26(11), 2547–2567. https://doi.org/10.1007/s10531-015-1035-0

Jüriado, I., Kaasalainen, U., Jylhä, M., & Rikkinen, J. (2019). Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus Peltigera (Ascomycota) in Estonia (northeastern Europe). Fungal Ecology, 39, 45–54. https://doi.org/https://doi.org/10.1016/j.funeco.2018.11.005

Kaasalainen, U., Tuovinen, V., Mwachala, G., Pellikka, P., & Rikkinen, J. (2021). Complex Interaction Networks Among Cyanolichens of a Tropical Biodiversity Hotspot. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.672333

Koch, N. M., Matos, P., Branquinho, C., Pinho, P., Lucheta, F., Martins, S. M. de A., & Vargas, V. M. F. (2019). Selecting lichen functional traits as ecological indicators of the effects of urban environment. Science of The Total Environment, 654, 705–713. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.11.107

Leiva, D., Clavero-León, C., Carú, M., & Orlando, J. (2016). Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota. FEMS Microbiology Ecology, 92(11), fiw178. https://doi.org/10.1093/femsec/fiw178

Leiva, D., Fernández-Mendoza, F., Acevedo, J., Carú, M., Grube, M., & Orlando, J. (2021). The Bacterial Community of the Foliose Macro-lichen Peltigera frigida Is More than a Mere Extension of the Microbiota of the Subjacent Substrate. Microbial Ecology, 81(4), 965–976. https://doi.org/10.1007/s00248-020-01662-y

Liu, X., Zhang, L., & Hong, S. (2011). Global biodiversity research during 1900-2009: A bibliometric analysis. Biodiversity and Conservation, 20(4), 807–826. https://doi.org/10.1007/s10531-010-9981-z

Lu, J., Magain, N., Miadlikowska, J., Coyle, J. R., Truong, C., & Lutzoni, F. (2018). Bioclimatic factors at an intrabiome scale are more limiting than cyanobiont availability for the lichen-forming genus Peltigera. American Journal of Botany, 105(7), 1198–1211. https://doi.org/10.1002/ajb2.1119

Magain, N., Miadlikowska, J., Goffinet, B., Sérusiaux, E., & Lutzoni, F. (2017). Macroevolution of Specificity in Cyanolichens of the Genus Peltigera Section Polydactylon (Lecanoromycetes, Ascomycota). Systematic Biology, 66(1), 74–99. https://doi.org/10.1093/sysbio/syw065

Martín-Martín, A., Thelwall, M., Orduna-Malea, E., & Delgado López-Cózar, E. (2021). Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics, 126(1), 871–906. https://doi.org/10.1007/s11192-020-03690-4

Matos, P., Pinho, P., Aragón, G., Martínez, I., Nunes, A., Soares, A. M. V. M., & Branquinho, C. (2015). Lichen traits responding to aridity. Journal of Ecology, 103(2), 451–458. https://doi.org/https://doi.org/10.1111/1365-2745.12364

McCune, B. (1993). Gradients in Epiphyte Biomass in Three Pseudotsuga-Tsuga Forests of Different Ages in Western Oregon and Washington. The Bryologist, 96(3), 405–411. https://doi.org/10.2307/3243870

Menge, D. N. L., & Hedin, L. O. (2009). Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand. Ecology, 90(8), 2190–2201. https://doi.org/10.1890/08-0877.1

Neitlich, P. N., & McCune, B. (1997). Sitios criticos de diversidad de liquenes epifitos en dos bosques jovenes bajo manejo. Conservation Biology, 11(1), 172–182. https://doi.org/10.1046/j.1523-1739.1997.95492.x

Nimis, P. L., Martellos, S., Chiarucci, A., Ongaro, S., Peplis, M., Pittao, E., & Nascimbene, J. (2020). Exploring the relationships between ecology and species traits in cyanolichens: A case study on Italy. Fungal Ecology, 47, 100950.

Otálora, M. A. G., Salvador, C., Martínez, I., & Aragón, G. (2013). Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microbial Ecology, 65(2), 517–530.

Peck, J. E., & McCune, B. (1997). Remnant trees and canopy lichen communities in western Oregon: A retrospective approach. Ecological Applications, 7(4), 1181–1187. https://doi.org/10.1890/1051-0761(1997)007[1181:RTACLC]2.0.CO;2

Phinney, N. H., Ellis, C. J., & Asplund, J. (2022). Trait-based response of lichens to large-scale patterns of climate and forest availability in Norway. Journal of Biogeography, 49(2), 286–298. https://doi.org/https://doi.org/10.1111/jbi.14297

Ramírez-Fernández, L., Zúñiga, C., Méndez, M. A., Carú, M., & Orlando, J. (2013). Genetic diversity of terricolous Peltigera cyanolichen communities in different conservation states of native forest from southern Chile. International Microbiology : The Official Journal of the Spanish Society for Microbiology, 16(4), 243–252. https://doi.org/10.2436/20.1501.01.200

Rikkinen, J. (2013). Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys, 6, 3–32. https://doi.org/10.3897/mycokeys.6.3869

Rikkinen, J. (2015). Cyanolichens. Biodiversity and Conservation, 24(4), 973–993. https://doi.org/10.1007/s10531-015-0906-8

Svensson, M., Caruso, A., Yahr, R., Ellis, C., Thor, G., & Snäll, T. (2016). Combined observational and experimental data provide limited support for facilitation in lichens. Oikos, 125(2), 278–283. https://doi.org/https://doi.org/10.1111/oik.02279

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.

West, N. J., Parrot, D., Fayet, C., Grube, M., Tomasi, S., & Suzuki, M. T. (2018). Marine cyanolichens from different littoral zones are associated with distinct bacterial communities. PeerJ, 6, e5208. https://doi.org/10.7717/peerj.5208

Yoshimura, I., & Yamamoto, Y. (1991). Development of Peltigera-Praetextata Lichen Thalli in Culture. Symbiosis, 11(2–3), 109–117.

Zhang, X., McRose, D. L., Darnajoux, R., Bellenger, J. P., Morel, F. M. M., & Kraepiel, A. M. L. (2016). Alternative nitrogenase activity in the environment and nitrogen cycle implications. Biogeochemistry, 127(2), 189–198. https://doi.org/10.1007/s10533-016-0188-6

Zúñiga, C., Leiva, D., Carú, M., & Orlando, J. (2017). Substrates of Peltigera Lichens as a Potential Source of Cyanobionts. Microbial Ecology, 74(3), 561–569. https://doi.org/10.1007/s00248-017-0969-z

Publicado

24/04/2022

Cómo citar

SCUR, M. C.; KITAURA, M. J.; FARIA , R. R. . Investigación de cianolíquenes: un análisis bibliométrico de 1991 a 2022. Research, Society and Development, [S. l.], v. 11, n. 6, p. e16811628764, 2022. DOI: 10.33448/rsd-v11i6.28764. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28764. Acesso em: 22 dic. 2024.

Número

Sección

Ciencias Agrarias y Biológicas