Avaliação de três cimentos resinosos na produção de artefatos de tomografia computadorizada de feixe cônico em dentes com pinos de fibra de vidro

Autores

DOI:

https://doi.org/10.33448/rsd-v11i6.28770

Palavras-chave:

Artefatos; Tomografia Computadorizada de Feixe Cônico; Tomada de decisão clínica; Cimentos de resina.

Resumo

O presente estudo analisou a presença de artefatos em dentes tratados endodonticamente e restaurados com pinos de fibra de vidro (PFV) cimentados com diferentes cimentos resinosos por meio de tomografia computadorizada de feixe cônico (TCFC) para avaliar a relação contraste-ruído (RCR). Um total de 60 pré-molares inferiores foram selecionados para confeccionar os fantomas a fim de simular uma situação clínica. Os dentes foram alocados em 6 grupos, nos quais G1, G2 e G3 foram dentes tratados endodonticamente e restaurados com PFV cimentados com os cimentos resinosos Nexus 3, Duo-Link e Allcem Core, respectivamente; G4: dentes tratados endodonticamente restaurados com PFV; G5: dentes tratados apenas endodonticamente; e G6: dentes hígidos. Os valores médios da escala de cinza foram analisados nas imagens axiais dos terços cervical, médio e apical do comprimento do pino. A análise da RCR foi realizada em todos os grupos, exceto G5 e G6. Houve diferença estatisticamente significativa nos valores médios da região do terço médio em relação aos grupos analisados (p=0,026). No entanto, artefatos foram observados em todos os grupos estudados. A diferença estatística observada entre os terços cervical e apical quando os grupos foram avaliados em conjunto não caracterizou a ausência de artefatos entre os cimentos resinosos, mesmo quando apenas o PFV estava presente. Consequentemente, a escolha de um cimento resinoso pode ser baseada na facilidade de manuseio, melhor tempo de trabalho, custo-benefício, modos de ativação, condições do substrato e aspectos clínicos. Em resumo, a qualidade da imagem foi comprometida por artefatos na presença de PFV através de TCFC com ou sem os cimentos resinosos no canal radicular.

Referências

Altintas, S. H., Yildirim, T., Kayipmaz, S., & Usumez, A. (2013). Evaluation of the radiopacity of luting cements by digital radiography. Journal of Prosthodontics, 22(4), 282–286.

Antonijevic, D., Jevremovic, D., Jovanovic, S., & Obradovic-Djuricic, K. (2012). An in vitro radiographic analysis of the density of dental luting cements as measured by CCD-based digital radiography. Quintessence International, 43(5), 421–428.

Bayrak, S., Kursun Cakmak, E. S., & Kamalak, H. (2020). Contrast-to-noise ratios of different dental restorative materials: an in-vitro cone beam computed tomography study. European Oral Research, 54(1), 36–41.

Bechara, B. B., Moore, W. S., McMahan, C. A., & Noujeim, M. (2012). Metal artefact reduction with cone beam CT: an in vitro study. Dento Maxillo Facial Radiology, 41(3), 248–253.

Bechara, B., Alex McMahan, C., Moore, W. S., Noujeim, M., Teixeira, F. B., & Geha, H. (2013). Cone beam CT scans with and without artefact reduction in root fracture detection of endodontically treated teeth. Dento Maxillo Facial Radiology, 42(5), 20120245.

Carvalho, M. A., Lazari, P. C., Gresnigt, M., Del Bel Cury, A. A., & Magne, P. (2018). Current options concerning the endodontically-treated teeth restoration with the adhesive approach. Brazilian Oral Research, 32(suppl 1), e74.

Carvalho, R.L.S. de., Spinelli, F. de L.C., Mendonça, L.S. de., Arruda, J.A.A. de., Moreno, A., Alvares, P.R., Rodrigues, C.D., Sobral, A.P.V., & Silveira, M.M.F. da. (2021). Detection of vertical root fractures in the presence of artefacts by digital radiography and cone beam computed tomography. Research, Society and Development, 10, e284101018393.

Celikten, B., Jacobs, R., deFaria Vasconcelos, K., Huang, Y., Nicolielo, L., & Orhan, K. (2017). Assessment of volumetric distortion artifact in filled root canals using different cone-beam computed tomographic devices. Journal of Endodontics, 43(9), 1517–1521.

Demirturk Kocasarac, H., Helvacioglu Yigit, D., Bechara, B., Sinanoglu, A., & Noujeim, M. (2016). Contrast-to-noise ratio with different settings in a CBCT machine in presence of different root-end filling materials: an in vitro study. Dento Maxillo Facial Radiology, 45(5), 20160012.

Diniz de Lima, E., Lira de Farias Freitas, A. P., Mariz Suassuna, F. C., Sousa Melo, S. L., Bento, P. M., & Pita de Melo, D. (2019). Assessment of cone-beam computed tomographic artifacts from different intracanal materials on birooted teeth. Journal of Endodontics, 45(2), 209–213.e2.

Draenert, F. G., Coppenrath, E., Herzog, P., Müller, S., & Mueller-Lisse, U. G. (2007). Beam hardening artefacts occur in dental implant scans with the NewTom cone beam CT but not with the dental 4-row multidetector CT. Dento Maxillo Facial Radiology, 36(4), 198–203.

Dukic W. (2019). Radiopacity of composite luting cements using a digital technique. Journal of Prosthodontics, 28(2), e450–e459.

Erik, A. A., Erik, C. E., & Yıldırım, D. (2019). Experimental study of influence of composition on radiopacity of fiber post materials. Microscopy Research and Technique, 82(9), 1448–1454.

Estrela, C., Pécora, J. D., Souza-Neto, M. D., Estrela, C. R., & Bammann, L. L. (1999). Effect of vehicle on antimicrobial properties of calcium hydroxide pastes. Brazilian Dental Journal, 10(2), 63–72.

Fagundes, D., de Mendonça, I. L., de Albuquerque, M. T., & Inojosa, I. (2014). Spontaneous healing responses detected by cone-beam computed tomography of horizontal root fractures: a report of two cases. Dental Traumatology, 30(6), 484–487.

Ferreira, L. M., Visconti, M. A., Nascimento, H. A., Dallemolle, R. R., Ambrosano, G. M., & Freitas, D. Q. (2015). Influence of CBCT enhancement filters on diagnosis of vertical root fractures: a simulation study in endodontically treated teeth with and without intracanal posts. Dento Maxillo Facial Radiology, 44(5), 20140352.

Fonseca, R. B., Branco, C. A., Soares, P. V., Correr-Sobrinho, L., Haiter-Neto, F., Fernandes-Neto, A. J., & Soares, C. J. (2006). Radiodensity of base, liner and luting dental materials. Clinical Oral Investigations, 10(2), 114–118.

Fontenele, R. C., Nascimento, E. H., Vasconcelos, T. V., Noujeim, M., & Freitas, D. Q. (2018). Magnitude of cone beam CT image artifacts related to zirconium and titanium implants: impact on image quality. Dento Maxillo Facial Radiology, 47(6), 20180021.

Freitas, D. Q., Fontenele, R. C., Nascimento, E., Vasconcelos, T. V., & Noujeim, M. (2018). Influence of acquisition parameters on the magnitude of cone beam computed tomography artifacts. Dento Maxillo Facial Radiology, 47(8), 20180151.

Furtos, G., Baldea, B., Silaghi-Dumitrescu, L., Moldovan, M., Prejmerean, C., & Nica, L. (2012). Influence of inorganic filler content on the radiopacity of dental resin cements. Dental Materials Journal, 31(2), 266–272.

Goracci, C., Juloski, J., Schiavetti, R., Mainieri, P., Giovannetti, A., Vichi, A., & Ferrari, M. (2015). The influence of cement filler load on the radiopacity of various fibre posts ex vivo. International Endodontic Journal, 48(1), 60–67.

Krithikadatta, J., Gopikrishna, V., & Datta, M. (2014). CRIS Guidelines (Checklist for Reporting In-vitro Studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. Journal of Conservative Dentistry, 17(4), 301–304. https://doi.org/10.4103/0972-0707.136338

Lin, H. H., Chiang, W. C., Lo, L. J., Sheng-Pin Hsu, S., Wang, C. H., & Wan, S. Y. (2013). Artifact-resistant superimposition of digital dental models and cone-beam computed tomography images. Journal of Oral and Maxillofacial Surgery, 71(11), 1933–1947.

Nascimento, E., Fontenele, R. C., Santaella, G. M., & Freitas, D. Q. (2019). Difference in the artefacts production and the performance of the metal artefact reduction (MAR) tool between the buccal and lingual cortical plates adjacent to zirconium dental implant. Dento Maxillo Facial Radiology, 48(8), 20190058.

Panjnoush, M., Kheirandish, Y., Kashani, P. M., Fakhar, H. B., Younesi, F., & Mallahi, M. (2016). Effect of Exposure Parameters on Metal Artifacts in Cone Beam Computed Tomography. Journal of Dentistry, 13(3), 143–150.

Pauwels, R., Stamatakis, H., Bosmans, H., Bogaerts, R., Jacobs, R., Horner, K., Tsiklakis, K., & SEDENTEXCT Project Consortium (2013). Quantification of metal artifacts on cone beam computed tomography images. Clinical Oral Implants Research, 24 Suppl A100, 94–99.

Pedrosa, R. F., Brasileiro, I. V., dos Anjos Pontual, M. L., dos Anjos Pontual, A., & da Silveira, M. M. (2011). Influence of materials radiopacity in the radiographic diagnosis of secondary caries: evaluation in film and two digital systems. Dento Maxillo Facial Radiology, 40(6), 344–350.

Petersson, A., Axelsson, S., Davidson, T., Frisk, F., Hakeberg, M., Kvist, T., Norlund, A., Mejàre, I., Portenier, I., Sandberg, H., Tranaeus, S., & Bergenholtz, G. (2012). Radiological diagnosis of periapical bone tissue lesions in endodontics: a systematic review. International Endodontic Journal, 45(9), 783–801.

Rabelo, K. A., Cavalcanti, Y. W., de Oliveira Pinto, M. G., Sousa Melo, S. L., Campos, P., de Andrade Freitas Oliveira, L. S., & de Melo, D. P. (2017). Quantitative assessment of image artifacts from root filling materials on CBCT scans made using several exposure parameters. Imaging Science in Dentistry, 47(3), 189–197.

Rodriguez-Molares, A., Rindal, O., D'hooge, J., Masoy, S. E., Austeng, A., Lediju Bell, M. A., & Torp, H. (2020). The generalized contrast-to-noise ratio: a formal definition for lesion detectability. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(4), 745–759.

Rubo, M. H., & el-Mowafy, O. (1998). Radiopacity of dual-cured and chemical-cured resin-based cements. The International Journal of Prosthodontics, 11(1), 70–74.

Schulze, R., Heil, U., Gross, D., Bruellmann, D. D., Dranischnikow, E., Schwanecke, U., & Schoemer, E. (2011). Artefacts in CBCT: a review. Dento Maxillo Facial Radiology, 40(5), 265–273.

Soares, C. J., Rodrigues, M. P., Faria-E-Silva, A. L., Santos-Filho, P., Veríssimo, C., Kim, H. C., & Versluis, A. (2018). How biomechanics can affect the endodontic treated teeth and their restorative procedures? Brazilian Oral Research, 32(suppl 1), e76.

Takeshita, W. M., Santos, L. R. A., Castilho, J. C. M., Médici Filho, E. M., Moraes, L. C., Sannomiya, E. K. (2004). An investigation of the optical density of composite resin using digital radiography. Ciência Odontológica Brasileira, 7(2), 6–11.

Tanomaru-Filho, M., da Silva, G. F., Duarte, M. A., Gonçalves, M., & Tanomaru, J. M. (2008). Radiopacity evaluation of root-end filling materials by digitization of images. Journal of Applied Oral Science, 16(6), 376–379.

Toyooka, H., Taira, M., Wakasa, K., Yamaki, M., Fujita, M., & Wada, T. (1993). Radiopacity of 12 visible-light-cured dental composite resins. Journal of Oral Rehabilitation, 20(6), 615–622.

van Dijken, J. W., Wing, K. R., & Ruyter, I. E. (1989). An evaluation of the radiopacity of composite restorative materials used in Class I and Class II cavities. Acta Odontologica Scandinavica, 47(6), 401–407.

Vasconcelos, K. F., Nicolielo, L. F., Nascimento, M. C., Haiter-Neto, F., Bóscolo, F. N., Van Dessel, J., EzEldeen, M., Lambrichts, I., & Jacobs, R. (2015). Artefact expression associated with several cone-beam computed tomographic machines when imaging root filled teeth. International Endodontic Journal, 48(10), 994–1000.

Walcher, J. G., Leitune, V., Collares, F. M., de Souza Balbinot, G., & Samuel, S. (2019). Physical and mechanical properties of dual functional cements-an in vitro study. Clinical Oral Investigations, 23(4), 1715–1721.

Yang C. C. (2016). Characterization of scattered X-ray photons in dental cone-beam computed tomography. PloS one, 11(3), e0149904.

Downloads

Publicado

25/04/2022

Como Citar

MENDONÇA, L. S. de .; COSTA, L. M. .; ARRUDA, J. A. A. de .; SOBRAL, A. P. V. .; PONTUAL, M. L. dos A. .; SILVEIRA, M. M. F. da . Avaliação de três cimentos resinosos na produção de artefatos de tomografia computadorizada de feixe cônico em dentes com pinos de fibra de vidro. Research, Society and Development, [S. l.], v. 11, n. 6, p. e22411628770, 2022. DOI: 10.33448/rsd-v11i6.28770. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28770. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências da Saúde