Evaluación de tres cementos de resina en la producción de artefactos de tomografía computarizada de haz cónico en dientes con postes de fibra de vidrio
DOI:
https://doi.org/10.33448/rsd-v11i6.28770Palabras clave:
Artefactos; Tomografía Computarizada de Haz Cónico; Toma de decisiones clínicas; Cementos de resina.Resumen
El presente estudio analizó la presencia de artefactos en dientes tratados endodónticamente restaurados con postes de fibra de vidrio (PFV) cementados con cementos de resina diferentes mediante tomografía computarizada de haz cónico (TCHC) para evaluar la relación contraste-ruido (RCR). Se seleccionaron un total de 60 premolares inferiores para realizar los fantomas con el fin de simular una situación clínica. Los dientes fueron asignados en 6 grupos, en los cuales los grupos G1, G2 y G3 fueron dientes tratados endodónticamente, restaurados con PFV y cementados con cementos de resina Nexus 3, Duo-Link y Allcem Core, respectivamente; G4: dientes tratados endodónticamente restaurados con PFV; G5: dientes tratados solo endodónticamente; y G6: dientes sanos. Se analizaron los valores medios de la escala de grises en las imágenes axiales de los tercios cervical, medio y apical de la longitud del poste. El análisis RCR se realizó en todos los grupos excepto G5 y G6. Hubo diferencia estadísticamente significativa en los valores medios de la región del tercio medio en relación a los grupos analizados (p=0,026). Sin embargo, se observaron artefactos en todos los grupos estudiados. La diferencia estadística observada entre los tercios cervical y apical cuando los grupos fueron evaluados juntos no caracterizó la ausencia de artefactos entre los cementos de resina, incluso cuando solo estaba presente el PFV. En consecuencia, la elección de un cemento de resina puede basarse en la facilidad de manejo, mejor tiempo de trabajo, rentabilidad, modos de activación, condiciones del sustrato y aspectos clínicos. En resumen, la calidad de la imagen se vio comprometida por artefactos en presencia de PFV a través de TCHC con o sin cementos de resina en el conducto radicular.
Citas
Altintas, S. H., Yildirim, T., Kayipmaz, S., & Usumez, A. (2013). Evaluation of the radiopacity of luting cements by digital radiography. Journal of Prosthodontics, 22(4), 282–286.
Antonijevic, D., Jevremovic, D., Jovanovic, S., & Obradovic-Djuricic, K. (2012). An in vitro radiographic analysis of the density of dental luting cements as measured by CCD-based digital radiography. Quintessence International, 43(5), 421–428.
Bayrak, S., Kursun Cakmak, E. S., & Kamalak, H. (2020). Contrast-to-noise ratios of different dental restorative materials: an in-vitro cone beam computed tomography study. European Oral Research, 54(1), 36–41.
Bechara, B. B., Moore, W. S., McMahan, C. A., & Noujeim, M. (2012). Metal artefact reduction with cone beam CT: an in vitro study. Dento Maxillo Facial Radiology, 41(3), 248–253.
Bechara, B., Alex McMahan, C., Moore, W. S., Noujeim, M., Teixeira, F. B., & Geha, H. (2013). Cone beam CT scans with and without artefact reduction in root fracture detection of endodontically treated teeth. Dento Maxillo Facial Radiology, 42(5), 20120245.
Carvalho, M. A., Lazari, P. C., Gresnigt, M., Del Bel Cury, A. A., & Magne, P. (2018). Current options concerning the endodontically-treated teeth restoration with the adhesive approach. Brazilian Oral Research, 32(suppl 1), e74.
Carvalho, R.L.S. de., Spinelli, F. de L.C., Mendonça, L.S. de., Arruda, J.A.A. de., Moreno, A., Alvares, P.R., Rodrigues, C.D., Sobral, A.P.V., & Silveira, M.M.F. da. (2021). Detection of vertical root fractures in the presence of artefacts by digital radiography and cone beam computed tomography. Research, Society and Development, 10, e284101018393.
Celikten, B., Jacobs, R., deFaria Vasconcelos, K., Huang, Y., Nicolielo, L., & Orhan, K. (2017). Assessment of volumetric distortion artifact in filled root canals using different cone-beam computed tomographic devices. Journal of Endodontics, 43(9), 1517–1521.
Demirturk Kocasarac, H., Helvacioglu Yigit, D., Bechara, B., Sinanoglu, A., & Noujeim, M. (2016). Contrast-to-noise ratio with different settings in a CBCT machine in presence of different root-end filling materials: an in vitro study. Dento Maxillo Facial Radiology, 45(5), 20160012.
Diniz de Lima, E., Lira de Farias Freitas, A. P., Mariz Suassuna, F. C., Sousa Melo, S. L., Bento, P. M., & Pita de Melo, D. (2019). Assessment of cone-beam computed tomographic artifacts from different intracanal materials on birooted teeth. Journal of Endodontics, 45(2), 209–213.e2.
Draenert, F. G., Coppenrath, E., Herzog, P., Müller, S., & Mueller-Lisse, U. G. (2007). Beam hardening artefacts occur in dental implant scans with the NewTom cone beam CT but not with the dental 4-row multidetector CT. Dento Maxillo Facial Radiology, 36(4), 198–203.
Dukic W. (2019). Radiopacity of composite luting cements using a digital technique. Journal of Prosthodontics, 28(2), e450–e459.
Erik, A. A., Erik, C. E., & Yıldırım, D. (2019). Experimental study of influence of composition on radiopacity of fiber post materials. Microscopy Research and Technique, 82(9), 1448–1454.
Estrela, C., Pécora, J. D., Souza-Neto, M. D., Estrela, C. R., & Bammann, L. L. (1999). Effect of vehicle on antimicrobial properties of calcium hydroxide pastes. Brazilian Dental Journal, 10(2), 63–72.
Fagundes, D., de Mendonça, I. L., de Albuquerque, M. T., & Inojosa, I. (2014). Spontaneous healing responses detected by cone-beam computed tomography of horizontal root fractures: a report of two cases. Dental Traumatology, 30(6), 484–487.
Ferreira, L. M., Visconti, M. A., Nascimento, H. A., Dallemolle, R. R., Ambrosano, G. M., & Freitas, D. Q. (2015). Influence of CBCT enhancement filters on diagnosis of vertical root fractures: a simulation study in endodontically treated teeth with and without intracanal posts. Dento Maxillo Facial Radiology, 44(5), 20140352.
Fonseca, R. B., Branco, C. A., Soares, P. V., Correr-Sobrinho, L., Haiter-Neto, F., Fernandes-Neto, A. J., & Soares, C. J. (2006). Radiodensity of base, liner and luting dental materials. Clinical Oral Investigations, 10(2), 114–118.
Fontenele, R. C., Nascimento, E. H., Vasconcelos, T. V., Noujeim, M., & Freitas, D. Q. (2018). Magnitude of cone beam CT image artifacts related to zirconium and titanium implants: impact on image quality. Dento Maxillo Facial Radiology, 47(6), 20180021.
Freitas, D. Q., Fontenele, R. C., Nascimento, E., Vasconcelos, T. V., & Noujeim, M. (2018). Influence of acquisition parameters on the magnitude of cone beam computed tomography artifacts. Dento Maxillo Facial Radiology, 47(8), 20180151.
Furtos, G., Baldea, B., Silaghi-Dumitrescu, L., Moldovan, M., Prejmerean, C., & Nica, L. (2012). Influence of inorganic filler content on the radiopacity of dental resin cements. Dental Materials Journal, 31(2), 266–272.
Goracci, C., Juloski, J., Schiavetti, R., Mainieri, P., Giovannetti, A., Vichi, A., & Ferrari, M. (2015). The influence of cement filler load on the radiopacity of various fibre posts ex vivo. International Endodontic Journal, 48(1), 60–67.
Krithikadatta, J., Gopikrishna, V., & Datta, M. (2014). CRIS Guidelines (Checklist for Reporting In-vitro Studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. Journal of Conservative Dentistry, 17(4), 301–304. https://doi.org/10.4103/0972-0707.136338
Lin, H. H., Chiang, W. C., Lo, L. J., Sheng-Pin Hsu, S., Wang, C. H., & Wan, S. Y. (2013). Artifact-resistant superimposition of digital dental models and cone-beam computed tomography images. Journal of Oral and Maxillofacial Surgery, 71(11), 1933–1947.
Nascimento, E., Fontenele, R. C., Santaella, G. M., & Freitas, D. Q. (2019). Difference in the artefacts production and the performance of the metal artefact reduction (MAR) tool between the buccal and lingual cortical plates adjacent to zirconium dental implant. Dento Maxillo Facial Radiology, 48(8), 20190058.
Panjnoush, M., Kheirandish, Y., Kashani, P. M., Fakhar, H. B., Younesi, F., & Mallahi, M. (2016). Effect of Exposure Parameters on Metal Artifacts in Cone Beam Computed Tomography. Journal of Dentistry, 13(3), 143–150.
Pauwels, R., Stamatakis, H., Bosmans, H., Bogaerts, R., Jacobs, R., Horner, K., Tsiklakis, K., & SEDENTEXCT Project Consortium (2013). Quantification of metal artifacts on cone beam computed tomography images. Clinical Oral Implants Research, 24 Suppl A100, 94–99.
Pedrosa, R. F., Brasileiro, I. V., dos Anjos Pontual, M. L., dos Anjos Pontual, A., & da Silveira, M. M. (2011). Influence of materials radiopacity in the radiographic diagnosis of secondary caries: evaluation in film and two digital systems. Dento Maxillo Facial Radiology, 40(6), 344–350.
Petersson, A., Axelsson, S., Davidson, T., Frisk, F., Hakeberg, M., Kvist, T., Norlund, A., Mejàre, I., Portenier, I., Sandberg, H., Tranaeus, S., & Bergenholtz, G. (2012). Radiological diagnosis of periapical bone tissue lesions in endodontics: a systematic review. International Endodontic Journal, 45(9), 783–801.
Rabelo, K. A., Cavalcanti, Y. W., de Oliveira Pinto, M. G., Sousa Melo, S. L., Campos, P., de Andrade Freitas Oliveira, L. S., & de Melo, D. P. (2017). Quantitative assessment of image artifacts from root filling materials on CBCT scans made using several exposure parameters. Imaging Science in Dentistry, 47(3), 189–197.
Rodriguez-Molares, A., Rindal, O., D'hooge, J., Masoy, S. E., Austeng, A., Lediju Bell, M. A., & Torp, H. (2020). The generalized contrast-to-noise ratio: a formal definition for lesion detectability. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(4), 745–759.
Rubo, M. H., & el-Mowafy, O. (1998). Radiopacity of dual-cured and chemical-cured resin-based cements. The International Journal of Prosthodontics, 11(1), 70–74.
Schulze, R., Heil, U., Gross, D., Bruellmann, D. D., Dranischnikow, E., Schwanecke, U., & Schoemer, E. (2011). Artefacts in CBCT: a review. Dento Maxillo Facial Radiology, 40(5), 265–273.
Soares, C. J., Rodrigues, M. P., Faria-E-Silva, A. L., Santos-Filho, P., Veríssimo, C., Kim, H. C., & Versluis, A. (2018). How biomechanics can affect the endodontic treated teeth and their restorative procedures? Brazilian Oral Research, 32(suppl 1), e76.
Takeshita, W. M., Santos, L. R. A., Castilho, J. C. M., Médici Filho, E. M., Moraes, L. C., Sannomiya, E. K. (2004). An investigation of the optical density of composite resin using digital radiography. Ciência Odontológica Brasileira, 7(2), 6–11.
Tanomaru-Filho, M., da Silva, G. F., Duarte, M. A., Gonçalves, M., & Tanomaru, J. M. (2008). Radiopacity evaluation of root-end filling materials by digitization of images. Journal of Applied Oral Science, 16(6), 376–379.
Toyooka, H., Taira, M., Wakasa, K., Yamaki, M., Fujita, M., & Wada, T. (1993). Radiopacity of 12 visible-light-cured dental composite resins. Journal of Oral Rehabilitation, 20(6), 615–622.
van Dijken, J. W., Wing, K. R., & Ruyter, I. E. (1989). An evaluation of the radiopacity of composite restorative materials used in Class I and Class II cavities. Acta Odontologica Scandinavica, 47(6), 401–407.
Vasconcelos, K. F., Nicolielo, L. F., Nascimento, M. C., Haiter-Neto, F., Bóscolo, F. N., Van Dessel, J., EzEldeen, M., Lambrichts, I., & Jacobs, R. (2015). Artefact expression associated with several cone-beam computed tomographic machines when imaging root filled teeth. International Endodontic Journal, 48(10), 994–1000.
Walcher, J. G., Leitune, V., Collares, F. M., de Souza Balbinot, G., & Samuel, S. (2019). Physical and mechanical properties of dual functional cements-an in vitro study. Clinical Oral Investigations, 23(4), 1715–1721.
Yang C. C. (2016). Characterization of scattered X-ray photons in dental cone-beam computed tomography. PloS one, 11(3), e0149904.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Luciana Sarmento de Mendonça; Laís Maciel Costa; José Alcides Almeida de Arruda; Ana Paula Veras Sobral; Maria Luiza dos Anjos Pontual; Marcia Maria Fonseca da Silveira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.