Síntesis en verde con Aloe Vera de MgAl2O4 sustituido por Mn y sin tratamiento de calcinación
DOI:
https://doi.org/10.33448/rsd-v11i6.28873Palabras clave:
MgAl2O4; Aloe Vera; Combustión de microondas; Mn.Resumen
Los aluminatos de magnesio (MgAl2O4) con Mn reemplazando los sitios A y B fueron sintetizados por el método de combustión asistida por microondas aplicando alta potencia (900 W) utilizando Aloe Vera como agente quelante verde. El estudio evaluó el efecto de la presencia de Aloe Vera y el posterior tratamiento térmico sobre las características estructurales de los polvos de espinela por difracción de rayos X (XRD). El efecto del tratamiento térmico se evaluó de dos formas: con y sin calcinación. Los resultados mostraron que las sustituciones ocurrieron formando las siguientes fases Mg0,21Mn2,36Al0,43O4, Mg0,13Mn2,63Al0,25O4, Mg0,31Mn2,06Al0,63O4, reemplazando el sitio A. Y MgMn1,88Al0,13O4 y MgMn1,75Al0,25O4, reemplazando el sitio B. La presencia de iones Mn y Aloe Vera afectó la estructura cristalina de la espinela. El grado de cristalinidad es menos intenso cuando el aluminato de magnesio fue reemplazado por el ion Mn, debido a la cantidad de deformaciones en el sistema cristalino inducidas por el ion sustituyente. Sin embargo, la calcinación de los polvos aumentó el grado de cristalinidad en todos los escenarios. Además, la sustitución provocó alteración en los parámetros de la red debido a la diferencia entre el radio iónico del sustituyente y el ion de Mg2 o Al3, evidenciándose en las posiciones de 2θ. La fase cúbica de la espinela se encontró en la mayoría de los materiales, aunque la fase tetraédrica se observó en algunas estructuras sustituidas con Mn. Los tamaños de cristalitos de los polvos fueron influenciados por la presencia de fitoquímicos presentes en el Aloe Vera. Se observó una disminución en el tamaño de los cristalitos cuando los materiales fueron calcinados como resultado de la gasificación de las biomoléculas del extracto vegetal. Sin embargo, estas biomoléculas ayudan en la disociación de precursores, aunque lentamente, lo que impidió el crecimiento de cristalitos. El uso de Aloe Vera como agente quelante demostró ser eficiente en la síntesis de espinelas de aluminato de magnesio, señalando el material sintetizado como una ruta prometedora para el campo de la síntesis verde.
Citas
Alam, M. W., Kumar, V. G. D., Ravikumar, C. R., Prashantha, S. C., Murthy, H. C. A., & Kumar, M. R. A. (2021). Chromium (III) doped polycrystalline MgAl2O4 nanoparticles for photocatalytic and supercapacitor applications. Journal of Physics and Chemistry of Solids, 110491. https://doi.org/https://doi.org/10.1016/j.jpcs.2021.110491
Alhaji, A., Taherian, M. H., Ghorbani, S., & Sharifnia, S. A. (2019). Development of synthesis and granulation process of MgAl2O4 powder for the fabrication of transparent ceramic. Optical Materials, 98, 109440. https://doi.org/https://doi.org/10.1016/j.optmat.2019.109440
Alvar, E. N., Rezaei, M., & Alvar, H. N. (2010). Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technology, 198(2), 275–278. https://doi.org/10.1016/j.powtec.2009.11.019
Azimi, G., Leion, H., Mattisson, T., Rydén, M., Snijkers, F., & Lyngfelt, A. (2014). Mn–Fe Oxides with Support of MgAl2O4, CeO2, ZrO2 and Y2O3–ZrO2 for Chemical-Looping Combustion and Chemical-Looping with Oxygen Uncoupling. Industrial & Engineering Chemistry Research, 53(25), 10358–10365. https://doi.org/10.1021/ie500994m
Baghbanzadeh, M., Carbone, L., Cozzoli, P. D., & Kappe, C. O. (2011). Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angewandte Chemie - International Edition, 50(48), 11312–11359. https://doi.org/10.1002/anie.201101274
Boroujerdnia, M., & Obeydavi, A. (2016). Synthesis and characterization of NiO/ MgAl2O4 nanocrystals with high surface area by modified sol-gel method. Microporous and Mesoporous Materials, 228, 289–296. https://doi.org/10.1016/j.micromeso.2016.04.006
Callister, W. D. (2007). Ciência e Engenharia de Materiais - Uma introdução. In Ciência e Engenharia de Materiais - Uma introdução.
Carvalho, L. S., de Melo e Melo, V. R., Sobrinho, E. V., Ruiz, D., & de Araújo Meloa, D. M. (2018). Effect of urea excess on the properties of the MgAl2O4 obtained by microwave-assisted combustion. Materials Research, 21(1), 1–11. https://doi.org/10.1590/1980-5373-MR-2017-0189
Chandrababu, P., Cheriyan, S., & Raghavan, R. (2020). Aloe vera leaf extract-assisted facile green synthesis of amorphous Fe2O3 for catalytic thermal decomposition of ammonium perchlorate. Journal of Thermal Analysis and Calorimetry, 139(1), 89–99. https://doi.org/10.1007/s10973-019-08376-5
Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnology Progress, 22(2), 577–583. https://doi.org/10.1021/bp0501423
Chen, Q. Y., Meng, C. M., Lu, T. C., Chang, X. H., Ji, G. F., Zhang, L., & Zhao, F. (2010). Enhancement of sintering ability of magnesium aluminate spinel (MgAl2O4) ceramic nanopowders by shock compression. Powder Technology, 200(1), 91–95. https://doi.org/https://doi.org/10.1016/j.powtec.2010.02.004
Chen, X. Y., Ma, C., Zhang, Z. J., & Li, X. X. (2009). Structure and photoluminescence study of porous red-emitting MgAl2O4:Eu3+ phosphor. Microporous and Mesoporous Materials, 123(1), 202–208. https://doi.org/https://doi.org/10.1016/j.micromeso.2009.04.002
Chopade, S. C., Kore, I. G., Patil, S. P., Jadhav, N. D., Srinidhi, C., & Desai, P. A. (2018). Lattice geometry controlled synthesis of Cu – Doped nickel oxide nanoparticles. Ceramics International, 44(5), 5621–5628. https://doi.org/https://doi.org/10.1016/j.ceramint.2017.12.209
Ewais, E. M. M., El-Amir, A. A. M., Besisa, D. H. A., Esmat, M., & El-Anadouli, B. E. H. (2017). Synthesis of nanocrystalline MgO/MgAl2O4 spinel powders from industrial wastes. Journal of Alloys and Compounds, 691, 822–833. https://doi.org/https://doi.org/10.1016/j.jallcom.2016.08.279
Figueredo, G. P. de, Carvalho, A. F. M. de, Medeiros, R. L. B. de A., Silva, F. M., Macêdo, H. P. de, Melo, M. A. de F., & Melo, D. M. de A. (2017). Synthesis of MgAl2O4 by Gelatin Method: Effect of Temperature and Time of Calcination in Crystalline Structure. Materials Research, 20(suppl 2), 254–259. https://doi.org/10.1590/1980-5373-mr-2017-0105
Ganesh, I. (2013). A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. International Materials Reviews, 58(2), 63–112. https://doi.org/10.1179/1743280412Y.0000000001
Ganesh, I., Johnson, R., Rao, G. V. N., Mahajan, Y. R., Madavendra, S. S., & Reddy, B. M. (2005). Microwave-assisted combustion synthesis of nanocrystalline MgAl 2O4 spinel powder. Ceramics International, 31(1), 67–74. https://doi.org/10.1016/j.ceramint.2004.03.036
Golyeva, E. V., Kolesnikov, I. E., Lähderanta, E., Kurochkin, A. V., & Mikhailov, M. D. (2018). Effect of synthesis conditions on structural, morphological and luminescence properties of MgAl2O4:Eu3+ nanopowders. Journal of Luminescence, 194(August 2017), 387–393. https://doi.org/10.1016/j.jlumin.2017.10.068
Golyeva, E. V., Vaishlia, E. I., Kurochkin, M. A., Kolesnikov, E. Y., Lähderanta, E., Semencha, A. V., & Kolesnikov, I. E. (2020). Nd3+ concentration effect on luminescent properties of MgAl2O4 nanopowders synthesized by modified Pechini method. Journal of Solid State Chemistry, 289(May), 3–7. https://doi.org/10.1016/j.jssc.2020.121486
Govindarajan, D., & Roy, D. (2020). Propane Dehydrogenation over Pt-Sn Supported on Magnesium Aluminate Material. 14(1), 37–44.
Grindlay, D., & Reynolds, T. (1986). The Aloe vera phenomenon: A review of the properties and modern uses of the leaf parenchyma gel. Journal of Ethnopharmacology, 16(2), 117–151. https://doi.org/https://doi.org/10.1016/0378-8741(86)90085-1
Guo, J., Lou, H., Zhao, H., Chai, D., & Zheng, X. (2004). Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, 273(1–2), 75–82. https://doi.org/10.1016/j.apcata.2004.06.014
Hao, Y., Zhang, Y., & Wang, S. (2021). Synthesis, structure and photoluminescence of sheet-like MgAl2O4: Cr3+. Inorganic Chemistry Communications, 132, 108853. https://doi.org/https://doi.org/10.1016/j.inoche.2021.108853
Jouini, A., Sato, H., Yoshikawa, A., Fukuda, T., Boulon, G., Kato, K., & Hanamura, E. (2006). Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel. Journal of Crystal Growth, 287(2), 313–317. https://doi.org/https://doi.org/10.1016/j.jcrysgro.2005.11.027
Jung, K. W., Lee, S. Y., & Lee, Y. J. (2018). Facile one-pot hydrothermal synthesis of cubic spinel-type manganese ferrite/biochar composites for environmental remediation of heavy metals from aqueous solutions. Bioresource Technology, 261(February), 1–9. https://doi.org/10.1016/j.biortech.2018.04.003
Katheria, S., Deo, G., & Kunzru, D. (2019). Rh-Ni/MgAl2O4 catalyst for steam reforming of methane: Effect of Rh doping, calcination temperature and its application on metal monoliths. Applied Catalysis A: General, 570, 308–318. https://doi.org/https://doi.org/10.1016/j.apcata.2018.11.021
Khorramirad, M. M., Rahimipour, M. R., Hadavi, S. M. M., & Jozdani, K. S. (2018). The effect of magnesium compounds (MgO and MgAl2O4) on the synthesis of Lanthanum magnesium hexaaluminate (LaMgAl11O19) by solid-state reaction method. Ceramics International, 44(5), 4734–4739. https://doi.org/10.1016/j.ceramint.2017.12.056
Kumar, S., Yadav, A., Yadav, M., & Yadav, J. P. (2017). Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Research Notes, 10(1), 60. https://doi.org/10.1186/s13104-017-2385-3
LAOKULa, P., KLINKAEWNARONGa, J., Phokha, S., & Seraphin, S. (2008). Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties. Optoelectronics and Advanced Materials, Rapid Communications, 2.
Li, G., Sun, Z., Chen, C., Cui, X., & Ren, R. (2007). Synthesis of nanocrystalline MgAl2O4 spinel powders by a novel chemical method. Materials Letters, 61(17), 3585–3588. https://doi.org/https://doi.org/10.1016/j.matlet.2006.11.123
Li, R., Liu, J., Xu, L., & Zhou, J. (2020). Microwave idrothermal synthesis of magnesium-aluminium spinel. Ceramics International, 46(18), 29207–29211. https://doi.org/10.1016/j.ceramint.2020.08.094
Liu, C., Lu, Y., Peng, Q., Xu, C., Yang, K., Li, X., Su, D., Li, Y., & Gao, F. (2021). The effect of Sr doping on the structural, mechanical, electronic properties and radiation tolerance of MgAl2O4 spinel: A first-principles study. Journal of Alloys and Compounds, 889, 161614. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.161614
Mahendiran, D., Subash, G., Arumai Selvan, D., Rehana, D., Senthil Kumar, R., & Kalilur Rahiman, A. (2017). Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-proliferative Studies. BioNanoScience, 7(3), 530–545. https://doi.org/10.1007/s12668-017-0418-y
MAUD - Materials Analysis Using Diffraction. (n.d.). Retrieved November 26, 2021, from http://www.ing.unitn.it/~maud/
Medeiros, R. L. B. A., Macedo, H. P., Oliveira, A. A. S., Melo, V. R. M., Carvalho, A. F. M., Melo, M. A. F., & Melo, D. M. A. (2016). Síntese de MgAl2O4 por combustão assistida por micro-ondas: influência dos parâmetros de síntese na formação e na estrutura cristalina. Ceramica, 62(362), 191–197. https://doi.org/10.1590/0366-69132016623621961
Milani, S. S., Kakroudi, M. G., Vafa, N. P., Rahro, S., & Behboudi, F. (2021). Synthesis and characterization of MgAl2O4 spinel precursor sol prepared by inorganic salts. Ceramics International, 47(4), 4813–4819. https://doi.org/https://doi.org/10.1016/j.ceramint.2020.10.051
Modanlou Juibari, N., & Eslami, A. (2019). Synthesis of nickel oxide nanorods by Aloe vera leaf extract. Journal of Thermal Analysis and Calorimetry, 136(2), 913–923. https://doi.org/10.1007/s10973-018-7640-x
Nantharak, W., Wattanathana, W., Klysubun, W., Rimpongpisarn, T., Veranitisagul, C., Koonsaeng, N., & Laobuthee, A. (2017). Effect of local structure of Sm3+ in MgAl2O4:Sm3+ phosphors prepared by thermal decomposition of triethanolamine complexes on their luminescence property. Journal of Alloys and Compounds, 701, 1019–1026. https://doi.org/https://doi.org/10.1016/j.jallcom.2017.01.090
Nascimento, R. A. B., Medeiros, R. L. B. A., Costa, T. R., Oliveira, Â. A. S., Macedo, H. P., Melo, M. A. F., & Melo, D. M. A. (2020). Mn/MgAl2O4 oxygen carriers for chemical looping combustion using coal: influence of the thermal treatment on the structure and reactivity. Journal of Thermal Analysis and Calorimetry, 140(6), 2673–2685. https://doi.org/10.1007/s10973-019-09014-w
Nasrollahzadeh, M., Sajjadi, M., Dadashi, J., & Ghafuri, H. (2020). Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Advances in Colloid and Interface Science, 276, 102103. https://doi.org/https://doi.org/10.1016/j.cis.2020.102103
Qiu, Z., Hao, H., Cao, M., Yao, Z., & Liu, H. (2018). Characteristics and structure of Mn-doped (0.6 − x)PMT–0.4PT–xPZ(x = 0.2,0.25) ternary system near morphotropic phase boundary. Journal of Materials Science: Materials in Electronics, 29(16), 14261–14266. https://doi.org/10.1007/s10854-018-9559-1
R H Davis, M G Leitner, J. M. R. (1988). Aloe vera. A natural approach for treating wounds, edema, and pain in diabetes. Journal of the American Podiatric Medical Association, 78(2), 60–68. https://doi.org/10.7547/87507315-78-2-60
Ragupathi, C., Vijaya, J. J., Surendhar, P., & Kennedy, L. J. (2014). Comparative investigation of nickel aluminate (NiAl2O4) nano and microstructures for the structural, optical and catalytic properties. Polyhedron, 72, 1–7. https://doi.org/https://doi.org/10.1016/j.poly.2014.01.013
Rahmat, N., Yaakob, Z., Pudukudy, M., Rahman, N. A., & Jahaya, S. S. (2018). Single step solid-state fusion for MgAl2O4 spinel synthesis and its influence on the structural and textural properties. Powder Technology, 329, 409–419. https://doi.org/10.1016/j.powtec.2018.02.007
Rasli, N. I., Basri, H., & Harun, Z. (2020). Zinc oxide from aloe vera extract: two-level factorial screening of biosynthesis parameters. Heliyon, 6(1), e03156. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e03156
Reynolds, T., & Dweck, A. C. (1999). Aloe vera leaf gel: a review update. Journal of Ethnopharmacology, 68(1), 3–37. https://doi.org/https://doi.org/10.1016/S0378-8741(99)00085-9
Routray, K. L., Saha, S., & Behera, D. (2019). Green synthesis approach for nano sized CoFe2O4 through aloe vera mediated sol-gel auto combustion method for high frequency devices. Materials Chemistry and Physics, 224, 29–35. https://doi.org/https://doi.org/10.1016/j.matchemphys.2018.11.073
Saha, S., Das, S., Ghorai, U. K., Mazumder, N., Gupta, B. K., & Chattopadhyay, K. K. (2013). Charge compensation assisted enhanced photoluminescence derived from Li-codoped MgAl2O4:Eu3+ nanophosphors for solid state lighting applications. Journal of the Chemical Society. Dalton Transactions, 42(36), 12965–12974. https://doi.org/10.1039/C3DT51411K
Sakuma, T., Minowa, S., Katsumata, T., Komuro, S., & Aizawa, H. (2014). Compositional variation of photoluminescence from Mn doped MgAl2O4 spinel. Optical Materials, 37, 302–305. https://doi.org/https://doi.org/10.1016/j.optmat.2014.06.014
Sánchez, M., González-Burgos, E., Iglesias, I., & Gómez-Serranillos, M. P. (2020). Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules, 25(6), 1324. https://doi.org/10.3390/molecules25061324
Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560–2566. https://doi.org/https://doi.org/10.1016/j.materresbull.2011.07.046
Sanjabi, S., & Obeydavi, A. (2015). Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol-gel method. Journal of Alloys and Compounds, 645, 535–540. https://doi.org/10.1016/j.jallcom.2015.05.107
Selvarajan, E., & Mohanasrinivasan, V. (2013). Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Materials Letters, 112, 180–182. https://doi.org/https://doi.org/10.1016/j.matlet.2013.09.020
Shahid, F., Ismail, B., Khan, A. M., Ain, Q. U., Khan, R. A., Shah, F., Fazal, T., & Asghar, M. N. (2020). Cost effective way of tuning physical properties of MgAl2O4 spinel nanomaterials by Sr+2/ Mn2+ cations doped at the T-Sites. Ceramics International, 46(8, Part A), 10710–10717. https://doi.org/https://doi.org/10.1016/j.ceramint.2020.01.078
Silva, T. H. S., Lima, C. G. M., Dutra, R. P. S., Aquino, F. de M., Grilo, J. P. F., Rajesh, S., & Macedo, D. A. (2017). Efeitos da dopagem com gadolínia na densificação e nas propriedades elétricas de soluções sólidas Ce0,99-xGdxCu0,01O2-δ. Cerâmica, 63(368), 470–477. https://doi.org/10.1590/0366-69132017633682141
Sturm, G. S. J., Stefanidis, G. D., Verweij, M. D., Van Gerven, T. D. T., & Stankiewicz, A. I. (2010). Design principles of microwave applicators for small-scale process equipment. Chemical Engineering and Processing: Process Intensification, 49(9), 912–922. https://doi.org/10.1016/j.cep.2010.07.017
Sun, G. H., Zhang, Q. L., Luo, J. Q., Li, L. C., Deng, Z., & Zhang, R. G. (2021). The effect of annealing on spectral characteristics of the Ti doped MgAl2O4 crystal. Journal of Luminescence, 234, 117956. https://doi.org/https://doi.org/10.1016/j.jlumin.2021.117956
Takebuchi, Y., Fukushima, H., Kato, T., Nakauchi, D., Kawaguchi, N., & Yanagida, T. (2020). Effect of Ti-doping on dosimetric properties of MgAl2O4 single crystals. Radiation Physics and Chemistry, 177, 109163. https://doi.org/https://doi.org/10.1016/j.radphyschem.2020.109163
Thongam, D. D., & Chaturvedi, H. (2021). Effect of biochemical compounds on ZnO nanomaterial preparation using aloe vera and lemon extracts. Materials Today: Proceedings, 44, 4299–4304. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.548
Venkateswarlu, S., & Yoon, M. (2015). Surfactant-Free Green Synthesis of Fe 3 O 4 Nanoparticles capped with 3,4-Dihydroxyphenethylcarbamodithioate: Stable Recyclable Magnetic Nanoparticles for Rapid and Efficient Removal of Hg(II) Ions from Water. Dalton Transactions (Cambridge, England : 2003), 44. https://doi.org/10.1039/c5dt03155a
Wenisch, C., Kurland, H.-D., Grabow, J., & Müller, F. A. (2016). Europium(III)-Doped MgAl2O4 Spinel Nanophosphor Prepared by CO2 Laser Co-Vaporization. Journal of the American Ceramic Society, 99(8), 2561–2564. https://doi.org/https://doi.org/10.1111/jace.14383
Xiao, G., Liu, Q., Wang, S., Komvokis, V. G., Amiridis, M. D., Heyden, A., Ma, S., & Chen, F. (2012). Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells. Journal of Power Sources, 202, 63–69. https://doi.org/https://doi.org/10.1016/j.jpowsour.2011.11.021
Xie, Q., Miao, C., Hua, W., Yue, Y., & Gao, Z. (2021). Ga-Doped MgAl2O4 Spinel as an Efficient Catalyst for Ethane Dehydrogenation to Ethylene Assisted by CO2. Industrial & Engineering Chemistry Research, 60(31), 11707–11714. https://doi.org/10.1021/acs.iecr.1c01641
Yıldırım, Ö. A., Unalan, H. E., & Durucan, C. (2013). Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties. Journal of the American Ceramic Society, 96(3), 766–773. https://doi.org/https://doi.org/10.1111/jace.12218
Yousefi, S., Haghighi, M., & Rahmani Vahid, B. (2018). Facile and efficient microwave combustion fabrication of Mg-spinel as support for MgO nanocatalyst used in biodiesel production from sunflower oil: Fuel type approach. Chemical Engineering Research and Design, 138, 506–518. https://doi.org/10.1016/j.cherd.2018.09.013
Yu, S., Hu, Y., Cui, H., Cheng, Z., & Zhou, Z. (2021). Ni-based catalysts supported on MgAl2O4 with different properties for combined steam and CO2 reforming of methane. Chemical Engineering Science, 232, 116379. https://doi.org/https://doi.org/10.1016/j.ces.2020.116379
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Pedro Paulo Linhares Ferreira; Dulce Maria de Araújo Melo; Rodolfo Luiz Bezerra de Araújo Medeiros; Tomaz Rodrigues de Araújo; Fernando Velcic Maziviero; Ângelo Anderson Silva de Oliveira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.