Influencia del procesamiento poscerámico en la síntesis de cemento óseo de brushita/SrO/Quitosano

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i7.30021

Palabras clave:

Cemento óseo; Brushita; Estroncio; Quitosano; Procesando; Enseñanza en materiales.

Resumen

Los avances científicos y tecnológicos en el desarrollo de cementos óseos han ido cambiando con el fin de obtener propiedades adecuadas para aplicaciones específicas. La incorporación de otros materiales como quitosano, colágeno, óxidos, polietilenglicol, entre otros, que reemplacen o incluso incorporen características no presentes, está bien explorada, sin embargo, la influencia del procesamiento de los polvos cerámicos ha sido poco estudiada. En este sentido, el presente trabajo obtuvo el cemento óseo de brushita/SrO/quitosano a través del método de disolución/precipitación, utilizando una mezcla de polvo de wollastonita/estroncio aplicado los métodos de remoción de humedad por horno y desecador. Las muestras se caracterizaron mediante análisis de tiempo de curado y fraguado, resistencia a la compresión, difracción de rayos X (XRD) y microscopía óptica (OM). Los resultados mostraron que el método de remoción de humedad promueve la variación de fases formadas en los cementos, como se observa en la DRX, generando una mejora en la resistencia a la compresión. La temperatura y el tiempo de los cementos mostraron una reducción durante su curado para las muestras de MPC. El análisis microscópico mostró que el método de eliminación de humedad promovió una mayor porosidad en la estructura interna del cemento, lo que puede proporcionar una mejora en su compatibilidad con la región ósea aplicada.

Citas

Anselmetti, G. C., Manca, A., Kanika, K., Murphy, K., Eminefendic, H., Masala, S., & Regge, D. (2009). Temperature measurement during polymerization of bone cement in percutaneous vertebroplasty: an in vivo study in humans. Cardiovascular and Interventional Radiology, 32(3), 491–498.

Belkoff, S. M., & Molloy, S. (2003). Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine, 28(14), 1555–1559.

Colorado, H. A., Hiel, C. C., Hahn, T., & Yang, J. (2018). 13 Wollastonite-Based Chemically Bonded Phosphate Ceramic Composites.

Colorado, H. A., Wang, Z., & Yang, J.-M. (2015). Inorganic phosphate cement fabricated with wollastonite, barium titanate, and phosphoric acid. Cement and Concrete Composites, 62, 13–21. https://doi.org/https://doi.org/10.1016/j.cemconcomp.2015.04.014

Dai, J., Fu, Y., Chen, D., & Sun, Z. (2021). A novel and injectable strontium-containing hydroxyapatite bone cement for bone substitution: A systematic evaluation. Materials Science and Engineering: C, 124, 112052. https://doi.org/https://doi.org/10.1016/j.msec.2021.112052

Fada, R., Shahgholi, M., & Karimian, M. (2021). Improving the mechanical properties of strontium nitrate doped dicalcium phosphate cement nanoparticles for bone repair application. Ceramics International, 47(10, Part A), 14151–14159. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.02.002

Farvardin, A., Bakhtiarinejad, M., Murphy, R. J., Basafa, E., Khanuja, H., Oni, J. K., & Armand, M. (2021). A biomechanically-guided planning and execution paradigm for osteoporotic hip augmentation: Experimental evaluation of the biomechanics and temperature-rise. Clinical Biomechanics, 87, 105392. https://doi.org/https://doi.org/10.1016/j.clinbiomech.2021.105392

Hofmann, M. P., Mohammed, A. R., Perrie, Y., Gbureck, U., & Barralet, J. E. (2009). High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta Biomaterialia, 5(1), 43–49. https://doi.org/https://doi.org/10.1016/j.actbio.2008.08.005

Hurle, K., Oliveira, J. M., Reis, R. L., Pina, S., & Goetz-Neunhoeffer, F. (2021). Ion-doped Brushite Cements for Bone Regeneration. Acta Biomaterialia, 123, 51–71. https://doi.org/https://doi.org/10.1016/j.actbio.2021.01.004

Kashimbetova, A., Slámečka, K., Casas-Luna, M., Oliver-Urrutia, C., Ravaszová, S., Dvořák, K., Čelko, L., & Montufar, E. B. (2022). Implications of unconventional setting conditions on the mechanical strength of synthetic bone grafts produced with self-hardening calcium phosphate pastes. Ceramics International, 48(5), 6225–6235. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.11.163

Lee, H.-J., Kim, B., Padalhin, A. R., & Lee, B.-T. (2019). Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material. Materials Science and Engineering: C, 94, 385–392. https://doi.org/https://doi.org/10.1016/j.msec.2018.09.039

Li, X., & Chang, J. (2004). Synthesis of Wollastonite Single Crystal Nanowires by a Novel Hydrothermal Route. Chemistry Letters, 33(11), 1458–1459. https://doi.org/10.1246/cl.2004.1458

Lode, A., Heiss, C., Knapp, G., Thomas, J., Nies, B., Gelinsky, M., & Schumacher, M. (2018). Strontium-modified premixed calcium phosphate cements for the therapy of osteoporotic bone defects. Acta Biomaterialia, 65, 475–485. https://doi.org/10.1016/j.actbio.2017.10.036

Ly, O., Monchau, F., Rémond, S., Lors, C., Jouanneaux, A., Debarre, É., & Damidot, D. (2020). Optimization of the formulation of an original hydrogel-based bone cement using a mixture design. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103886. https://doi.org/https://doi.org/10.1016/j.jmbbm.2020.103886

Martins, M. G. (2021). Caracterização de uma argila da região norte de Minas Gerais para aplicações industriais. In Universidade Federal de Ouro Preto. https://200.239.128.125/handle/35400000/2965

Morúa, O. C., Cardoso, M. J. B., da Silva, H. N., Carrodeguas, R. G., Rodríguez, M. A., & Fook, M. V. L. (2021). Synthesis of brushite/polyethylene glycol cement for filler in bone tissue injuries. Cerâmica, 67, 289–294.

Morúa, O. C., Cardoso, M. J. B., Farias, K. A. S., Barbero, M. A. R., Carrodeguas, R. G., & Fook, M. V. L. (2017). Síntese e Avaliação de Cimento Ósseo com Diferentes Concentrações de Brushita. 1, 58–63.

Şahin, E., & Çiftçioğlu, M. (2021). Compositional, microstructural and mechanical effects of NaCl porogens in brushite cement scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 116, 104363. https://doi.org/https://doi.org/10.1016/j.jmbbm.2021.104363.

Sanosh, K. P., Chu, M.-C., Balakrishnan, A., Kim, T. N., & Cho, S.-J. (2009). Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders. Materials Letters, 63(24–25), 2100–2102.

Sarkar, A., & Kannan, S. (2014). In situ synthesis, fabrication and Rietveld refinement of the hydroxyapatite/titania composite coatings on 316L SS. Ceramics International, 40(5), 6453–6463. https://doi.org/https://doi.org/10.1016/j.ceramint.2013.11.096.

Silva, L. P., Ribeiro, M. D. P., Trichês, E. S., & Motisuke, M. (2019). Brushite cement containing gelatin: evaluation of mechanical strength and in vitro degradation. Cerâmica, 65, 261–266.

Sun, L., & Guo, D. (2022). Study on the improvement of compressive strength and fracture toughness of calcium phosphate cement. Ceramics International. https://doi.org/https://doi.org/10.1016/j.ceramint.2022.03.128.

Tamimi, F., Kumarasami, B., Doillon, C., Gbureck, U., Nihouannen, D. Le, Cabarcos, E. L., & Barralet, J. E. (2008). Brushite-collagen composites for bone regeneration. Acta Biomaterialia, 4(5), 1315–1321. https://doi.org/10.1016/j.actbio.2008.04.003.

Vezenkova, A., & Locs, J. (2022). Sudoku of porous, injectable calcium phosphate cements – Path to osteoinductivity. Bioactive Materials, 17, 109–124. https://doi.org/https://doi.org/10.1016/j.bioactmat.2022.01.001

Publicado

30/05/2022

Cómo citar

SANTOS, M. A. .; GONÇALVES, G. V. da S. .; LIMA, E. P. N. .; CARDOSO, M. J. B. .; SOUSA, W. J. B. de .; SILVA NETO, J. E. da .; FARIAS, K. A. S. .; FOOK, M. V. L. . Influencia del procesamiento poscerámico en la síntesis de cemento óseo de brushita/SrO/Quitosano. Research, Society and Development, [S. l.], v. 11, n. 7, p. e43711730021, 2022. DOI: 10.33448/rsd-v11i7.30021. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30021. Acesso em: 30 jun. 2024.

Número

Sección

Ingenierías