Sistema inmune innato de pescado y el uso de ajo como inmunoestimulante: revisión de literatura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i4.3014

Palabras clave:

Aditivos alimentarios; Compuestos bioactivos; Piscicultura.

Resumen

El objetivo de esta revisión de la literatura es resaltar los aspectos principales del sistema inmune innato de los peces, demostrando la necesidad de nuevas alternativas para el control de enfermedades, respetando la premisa de sostenibilidad, con el uso de inmunoestimulantes biológicamente activos. En los peces no hay presencia de tejidos u órganos mieloides, los componentes de su sistema inmunitario se clasifican solo como linfoides, es decir, la inmunidad innata, se considera la primera línea de defensa del organismo contra el patógeno. Por lo tanto, el uso de aditivos alimentarios e inmunoestimulantes ayuda a mejorar el sistema inmunológico natural de estos animales. Pueden ser sustancias sintéticas, químicas o biológicas que inducen la activación o el aumento de los componentes del sistema inmune, proporcionando así una defensa temprana contra enfermedades, y pueden usarse como tratamiento preventivo. Los compuestos vegetales, los aceites esenciales y los estratos de plantas bioactivas tienen un gran potencial, ya que tienen funciones antimicrobianas y antiparasitarias comprobadas. Entre ellos, el ajo se considera uno de los más efectivos, ya que actúa como un promotor del crecimiento, estimulador del apetito, antimicrobiano, antioxidante e inmunoestimulante, también ayuda con los parámetros hematológicos y aumenta el bienestar de los peces, así como la capacidad de mejorar la calidad de la carne y extender la vida útil.

Biografía del autor/a

Fernanda Gomes Paula, Universidade Federal de Goiás

Professora Adjunta

Lívia Mendonça Pascoal, Universidade Federal de Goiás

Professora Adjunta

Citas

Abdel-Hadi. Study on the use of Artemisia cina L. (wormseed plants) and Allium sativum (garlic) in the control of Saprolegniosis in egg of Cyprinus carpio (common carp) and Hypophthalmichthys molitrix (silver carp). (2008). The 30th Malaysian Symposium on Microbiology (MSM). Hyatt Regency Resort, Kuantan, Malaysia, August 16-19, 2008. Abdel-Hadi, Y.M., Saleh, O.A. and Akar, A.M., 2008.

Affonso, SF. (2006) Efeito tóxicos sobre a imunidade inata do peixe Centropomus parallelus (Poey,1860) causado por um hidrocarboneto policíclico aromático (naftaleno): avaliação por citometria de fluxo. [Tese]. São Paulo, Universidade de São Paulo.

Ahmed, IE, Deen, NE, Mohamed A. (2009). Application of some medicinal Plants to eliminate Trichodina sp. In tilapia (Oreochromis niloticus). Report and Opinion, 1(6):1-5.

Alsaid, M, Daud, h, Bejo, SK, Abuseliana A. (2010). Antimicrobial activities of some culinary spice extravts against Streptococcus agalactiae and its ptophylactic uses to prevent Streptococcal infection in red hybrid Tilapia (Oreochromis sp.). World journal of fish and marine sciences, 2(6):532-538.

Aly, SM, Atti, NMA, Mohamed, MF. (2008). Effect of garlic on the survival, growth, resistance and quality of oreochromis niloticus. In: 8th International Symposium on Tilapia in Aquaculture 2008, Cairo, Egito, p.277-194.

Araújo, GS. (2006). Efeito imunoestimulante dos polissacarídeos sulfatados da alga marinha vermelha Gracialaria caudata na reversão sexual de tilápia do Nilo, Oreochromis niloticus (Linnaeus, 1766) em condições adversas. [Dissertação]. Fortaleza, Universidade Federal do Ceará.

Ayroza, LMS, Romagosa, E, Ayroza, DMMR, Filho, JDS, Salles, FA. (2011). Custos e rentabilidade da produção de juvenis de tilápia-do-nilo em tanques-rede utilizando-se diferentes densidades de estocagem. R. Bras. Zootec., 40 (2):231-239.

Biller-Takahashi, JD. Imunoestimulantes e imunidade de organismos aquáticos. (2014). In: Maldi RR, Campos CM, Lizama MAP, Takemoto RM. Responsabilidade intelectual. Patologia e sanidade de ambientes aquáticos. Maringá: Editora Massoni, p.295.

Bowden, TJ, Cook, P, Rombout, JHWM. (2015). Development and function of the thymus in teleosts. Fish & Shekkfish Immunology, 19:413-427.

BRASIL, Boletim estatístico da pesca e aquicultura 2010. (2012). Ministério da Pesca e Aquicultura.

Chagas, EC, Majolo, C, Boijink, CL, Chaves, FCM, Hashimoto, GSO, Figueredo, AB, Martins, ML. (2014). Uso de óleos essenciais e extratos no tratamento de enfermidades de peixes. In: Maldi RR, Campos CM, Lizama MAP, Takemoto RM, responsabilidade intelectual. Patologia e sanidade de ambientes aquáticos. Maringá: Editora Massoni, p.269.

Chakraborty SB, Hancz C. (2011). Application of phytochemicals as immunostimulant antipathogenic and antistress agents in fish culture. Reviews in Aquaculture, 3:103-119.

Chitmanat C, Tongdonmuan K, Nunsong W. (2005). The use of crude extracts from traditional medicinal plants to eliminate Trichodina sp. in tilapia (Oreochromis niloticus) fingerlings. Songklanakarin J. Sci. Technol, 27(1):359-364.

Corzo-Martínez M, Corzo N, Villamiel M. (2007). Biological properties of onions and garlic. Trends in Food Science & Technology, 18; 609-625.

Diab, A. S., G. O. El-Nagar, and Y. M. Abd-El-Hady. (2002). Evaluation of Nigella sativa L (black seeds; baraka), Allium sativum (garlic) and BIOGEN as feed additives on growth performance and immunostimulants of O. niloticus fingerlings. Suez Canal Vet. Med. J., 745-775.

Ellis, AE. (2001). Innate host defense mechanisms of fish against viruses and bactéria. Developmental and Comparative Immunology, 25:827-839.

Fabregat, TEHP. (2006) Utilização do prebiótico flavofeed® como suplemento dietário para juvenis de tilápia do nilo oreochromis niloticus. [Tese]. Jaboticabal: Universidade Estadual de São Paulo, Centro de Aquicultura da UNESP.

Fast, MD, Sims, DE, Burks, JF, Mustafa, A, Ross, NW. (2002). Skin morphology and humoral non- specific defense parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comparative Biochemistry and Physiology, 132(Part A):645-657.

Fazlolahzadeh, F, Keramati, K, Nazifi, S, Shirian, S, Seifi, S. (2011). Effect of Garlic (Allium sativum) on Hematological Parameters and Plasma Activities of ALT and AST of Rainbow trout in Temperature Stress. Australian Journal of Basic and Applied Sciences, 5(9); 84-90.

Guo, JJ, Kuo, CM, Chuang, JW, Hong, RL, Chou, TIC. (2012). The effects of garlic-supplemented diets on antibacterial activity against Streptococcus iniae and on growth in orange-spotted grouper, Epinephelus coioides. Aquaculture, 33-38; 364-365.

Hai, NV. (2015). The use of medicinal plants as immunostimulants in aquiculture: A review. Aquaculture 446:88-96.

Harikrishnan, R, Balasundaram, C, Heo, MS. (2011). Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture, 317:1-15.

Harris, JC, Cottrell, Sl, Plummer, S, Lloyd, D. (2011). Antimicrobial properties of Allium sativum (garlic). Appl microbial biotechnol, 57:282-286.

Huchette, O, Kahane, R, Bellamy, C. (2005). Influence of environ and genetic factors on the allicin content of garlic bulbs. Acta Horticulture, 688:93-99.

Jegede, T. (2012). Effect of Garlic (Allium sativum) on Growth, Nutrient Utilization, Resistance and Survival of Tilapia zillii (Gervais 1852) Fingerlings. Journal of Agricultural Science, 4(2):269:274.

Kanani, HG, Sahandi, J, Taheri, A. (2012). Influence of Garlic (Allium sativum) anf mother worth (Matricaria chamomulli) extract on Icthyophtirius multificuls parasite treatment in sail fin molly (Poecília latipinna) ornamental fish. APCBEE Procedia, 4:6-11.

Lee, Dh, Ra, CS, Song, YH, Sung, KI, Kim, JD. (2012). Effects of dietary garlic extract on growth, feed utilization and whole body composition of juvenile starlet sturgeon (Acipenser ruthenus). Asian-Aust J. anim. Sci., 25(4):577-583.

Lee, JY, Gao, Y. (2012). Review of the application of garlic, Allium sativum, in Aquaculture. Journal of the world aquaculture society, 43 (4):447-458

Magnadóttir, B. (2006). Innate immunity of fish. Fish & Shekkfish Immunology, 20:137- 151.

Militz, TA, Southgate, PC, Carton, AG, Hutson, KS. (2013). Dietary supplementation of garlic (Allium sativum) to prevent monogenean infection in aquaculture. Aquaculture, 95– 99:408–409

Mouriño, JlP, Jatobá, A, Silva, BC, Vieira, FN, Martins, ML. (2012). Probióticos na aquicultura. In: Silva-Souza AT, Lizama MAP, Takemoto RM, responsabilidade intelectual. Patologia e sanidade de organismos aquáticos. Maringá: Editora Massoni, p.381.

Ndong, D, Fall, J. (2011). The effect of garlic (Allium sativum) on growth and immune responses of hybrid tilapia (Oreochromis niloticus x Oreochromis aureus). Journal of Clinical Immnunology and Immunopathology Research, 3(1); 1-9.

Nya, EJ, Austin, B. (2009). Use of garlic, Allium sativum, to control Aeromonas hydriphila infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of fish diseases, 32:963-970.

Pavanelli, GC, Eiras, JC, Takemoto, RM. (2008). Doenças de Peixes: profilaxia, diagnóstico e tratamento. 3ª Ed. Maringá; Editora da Universidade Estadual de Maringá, p.311.

Press, CM, Evensen, O. (1999(. The morphology of the immune system in teleost fishes. Fish & Shellfish Immunology, 9:309-318.

Sado, RY. (2006). Imunoestimulates dietéticos e respostoas biológicas, bioquímicas e hematológicas de juvenis de Piaractus mesopotamicus (Holmberg, 1887). [Tese]. Piracicaba: Universidade de São Paulo.

Sahu, S, Das, BK. (2007). Mishra, J. Pradhan, and N. Sarangi. Effect of Allium sativum on the immunity and survival of Labeo rohita infected with Aeromonas hydrophila. Journal of Applied Ichthyology, 23:80- 86.

Saita, MV. (2010). Parâmetris produtivos, fisiológicos e imunológicos de juvenis de pacu (Piaractus mesopotamicus) submetidos à restrição alimentar e estresse de manejo. [Dissertação]. Jaboticabal: UNESP.

Sakai, M. (1999). Current research status of fish immunostimulants. Aquaculture, 172:63-92.

Selvaraj, V, Sampath, K, Sekar, V. (2015). Administration of yeast glucan enhancer survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Fish & shellfish immunology, 19:293-306.

Shakya SR, Labh SN. (2014). Medicinal uses of garlic (Allium sativum) improves fish health and acts as an immunostimulant in aquaculture. European Journal of Biotechnology and Bioscience, 2 (4): 44-47.

Shalaby, AM, Khattab, YA, Abdel Rahman, AM. (2006). Effects of garlic (allium sativum) and chloramphenicol on growth performance, physiological parameters and survival of nile Tilapia (oreochromis niloticus). J. Venom. Anim. Toxins incl. Trop. Dis., 12 (2); 172- 201.

Subramanian, S, MacKinnon, SL, Ross, NW. (2007). A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comparative Biochemistry an Physiology, 148:256-263.

Syahidah, A, Saad, CR, Daud, HM, Abdelhadi, YM. (2015). Status and potential of herbal applications in aquaculture: A review. Iranian Journal of Fishies Sciences, 14(1):27-44.

Talpur, AD, Ikhwanuddin, M. (2012). Dietary effects of garlic (Allium sativum) on haemato- immunological parameters, survival, growth, and disease resistance against Vibrio harveyi infection in Asian sea bass, Lates calcarifer (Bloch). Aquaculture, 364-365; 6-12.

Urbinati, EC, Carneiro, PCF. (2004). Práticas de Manejo e Estresse dos Peixes em Piscicultura Intensiva. In Cyrino JEP, Urbinati EC, Castagnolli N. Tópicos Especiais em Piscicultura Tropical. São Paulo. Editora TecArt, p.171-193.

Vaseeharan, B, Thaya, R. (2013). Medicinal plant derivatives as immunostimulantes: an alternative to chemotherapeutics and antibiotics in aquaculture. Aquaculture International, 22(3):1079–1091.

Publicado

21/03/2020

Cómo citar

RODRIGUES, F. S.; CHAGAS, S. R.; ROCHA, M. C. V.; NASCENTE, E. de P.; PAULA, F. G.; PASCOAL, L. M. Sistema inmune innato de pescado y el uso de ajo como inmunoestimulante: revisión de literatura. Research, Society and Development, [S. l.], v. 9, n. 4, p. e152943014, 2020. DOI: 10.33448/rsd-v9i4.3014. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3014. Acesso em: 2 jul. 2024.

Número

Sección

Revisiones