Metabolitos fúngico com potencial antimicrobiano aislado y caracterizado producidos por género Fusarium: una revisión sistemática de la literatura
DOI:
https://doi.org/10.33448/rsd-v11i9.31513Palabras clave:
Metabolitos; Antimicrobianos; Filamentosos; Hongos; Fusarium.Resumen
La caracterización recurrente de los mismos compuestos bioactivos por parte de los hongos filamentosos puede causar desinterés en el tema biotecnológico así como por parte de la industria. El problema planteado por los investigadores se centra principalmente en la forma del proceso de cultivo estándar. Muchos de estos microorganismos fúngicos no pueden expresar sus genes y, en consecuencia, no sintetizan nuevos compuestos. Con ello, es necesario identificar qué metabolitos bioactivos fúngicos se han caracterizado para poder aislar nuevos compuestos. Por lo tanto, el objetivo de este trabajo fue hacer un estudio a través de los pasos de la revisión sistemática de la literatura de los metabolitos fúngicos aislados y caracterizados por el género Fusarium. Se utilizaron Scielo, Scopus, Lilacs, WebofScience y Medline para identificar los artículos publicados entre los años 1991 y 2020. Se utilizaron las palabras clave "Fusarium", "metabolito" y "antimicrobiano" para separar cada uno de los artículos que se ajustaban a la pregunta establecida en este trabajo: "¿Qué metabolitos fúngicos aislados y caracterizados del género Fusarium presentan potencial antimicrobiano?". Tras una búsqueda inicial, se encontraron 7967 artículos científicos en todas las bases de datos. Apesar de este número, sólo 438 artículos presentaron metabolitos bioactivos extraídos del género. A continuación, se realizaron los pasos de la revisión sistemática. Se identificaron 64 artículos para extraer los datos. En total, se encontraron 57 metabolitos con potencial antifúngico y antibacteriano. Entre ellos, los compuestos de las clases quinonas y péptidos no ribosomales fueron los más caracterizadas. Finalmente, el presente trabajo aporta un registro de compuestos bioactivos sintetizados durante los últimos 30 años para optimizar la búsqueda de nuevos metabolitos producidos por el género Fusarium
Citas
Alberti, F., Foster, G. & Bailey, A. (2016) Natural products from filamentous fungi and production by heterologous expression. Applied Microbiology and Biotechnology,101 (1) 493-500. https://doi.org/10.1007/s00253-016-8034-2.
Altomare, C., Pengue, R., Favilla, M., Evidente, A., & Visconti, A. (2004). Structure−activity relationships of derivatives of fusapyrone, an antifungal metabolite of Fusarium semitectum. Journal Agricultural and Food Chemistry, 52(1), 2997-3001. https://doi.org/ 10.1021/jf035233z.
Altomare, C. et al. (2000). Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. Journal Nature Product, 63(8), 1131-1135. https://doi.org/10.1021/np000023r.
Alvin, A., Kalaitzis, J.A., Sasia, B.& Neilan, B.A. Combined genetic and bioactivity-based prioritization leads to the isolation of an endophyte-derived antimycobacterial compound. (2016). Journal of Applied Microbiology, 120 (5), 1229-1239. https://doi.org/10.1111/jam.13062.
Amber, T. & Tabassum, S. (2020). Cyclosporin in dermatology: A practical compendium. Dermatologic Therapy, 33(6), 1-15. https://doi.org/10.1111/dth.13934.
Arunpanichlert, J. et al. (2011). A β-Resorcylic macrolide from the seagrass-derived fungus Fusarium sp. PSU-ES73. Archive of Pharmacal Research, 34 (10), 1633-1637. https://doi.org/10.1007/s12272-011-1007-1.
Atanasov, A.; Zotchev, S., & Dirsch, V. (2021) Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20 (1), 200-216. https://doi.org/10.1038/s41573-020-00114-z.
Azevedo, E. & Barata, M. (2018). Diversidade no reino Fungi e aplicações à Indústria. Revista Ciência Elementar, 6 (4), 1-7. https://doi.org/10.24927/rce2018.077.
Bacon, C.W., Hinton, D.M., Porter, J.K., Glenn, A.E. & Kuldau, G. (2004). Fusaric acid, a Fusarium verticillioides metabolite, antagonistic to the endophytic biocontrol bacterium Bacillus mojavensis. Canadian Journal of Botany, 82(7). https://doi.org/10.1139/B04-067.
Bai, X., Yu, R., Li, M. & Zhang, H. (2019). Antimicrobial assay of endophytic fungi from Rumex madaio and chemical study of strain R1. A Journal of the Bangladesh Pharmacological Society, 14 (3),129-135. https://doi.org/10.3329/bjp. v14i3.41598.
Baker, R.A., Tatum, J.H. & Nemec, S. (1990) Antimicrobial activity of naphthoquinones from Fusaria. Mycopathologia, 111 (3), 9-15. https://doi.org/10.1007/BF02277294
Bath, Z. et al. (2017). α-pyrones: small molecules with versatile structural diversity reflected in multiple pharmacological activities – an update. Biomedicine & Pharmacotherapy, 91(1), 365-277. https://doi.org/10.1016/j.biopha.2017.04.012.
Bechinger, B., & Gorr, S-U. (2016). Antimicrobial peptides: mechanisms of action and resistance. Journal of Dental Research, 96 (3), 254-260. https://doi.org/10.1177/0022034516679973.
Caballero, U. et al. (2021). In Vitro Synergistic Interactions of Isavuconazole and Echinocandins against Candida aureus. Antibiotics, 10 (355), 10-22. https://doi.org/10.3390/antibiotics10040355
Cheek, M. et al. (2020). New scientific discoveries: Plants and Fungi. Plants, People, Planet, 2 (2), 371–388. https://doi.org/10.1002/ppp3.10148.
Chen, J. et al. (2019). Fusariumins C and D, two novel antimicrobial agents from Fusarium oxysporum ZZP-R1 symbiotic on Rumex madaio Makino. Fitoterapia, 134 (1), 1-4. https://doi.org/10.1016/j.fitote.2019.01.016.
Cherian, P.T. et al. (2018). New β-lactam – Tetramic acid hybrids show promising antibacterial activities. Bioorganic & Medicinal Chemistry, 18 (1), 3105-3112. https://doi.org/10.1016/j.bmcl.2018.07.018.
Crous, P.W. et al. (2021). Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology, 98 (1),1-184. https://doi.org/10.1016/j.simyco.2021.100116.
Cui, Y. et al. (2012). Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia, 5 (1), 913-920. https://doi.org/10.1016/j.fitote.2012.04.009.
Damasceno, C., Higaki, N., Miguel, J. & Miguel, O, C. (2019). Chemical composition and biological activities of essential oils in the family Lauraceae: a systematic review of the literature. Planta Med, 85 (13), 1054-1072. https://doi.org/10.1055/a-0943-1908.
Dandawate, P., Padhye, S., Schobert, R. & Biersack, B. (2019). Discovery of natural products with metal-binding properties as promising antibacterial agents. Expert Opinion on Drug Discovery, 14 (6), 563-576. https://doi.org/10.1080/17460441.2019.1593367.
Deshmukh, R., Mathew, A. & Purohit, H.J. Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. Journal of Bioscience and Bioengineering, 114 (4), 443-448. https://doi.org/10.1016/j.jbiosc.2013.09.017.
Dong, J-W. et al. (2016). Production of a new tetracyclic triterpene sulfate metabolite sambacide by solid-state cultivated Fusarium sambucinum B10.2 using potato as substrate. Bioresource Technology, 218 (1), 1266-1270. https://doi.org/10.1016/j.biortech.2016.07.014.
Ebrahim, W., Ozkaya, F.C. & Ebada, S.S. (2020). Antifungal metabolites from endophytic fungus Fusarium verticillioides strain WF18. South African Journal of Botany, 133 (1), 40-44. https://doi.org/10.1016/j.sajb.2020.06.029.
El-fouly, M.Z. et al. (2017). A study on strategies applied for enhancing anthraquinones production by Fusarium spp. Arab Journal of Nuclear Science and Applications, 50 (1), 217-231. https://inis.iaea.org/search/search.aspx?orig_q=RN:48036684
Evdokimenkova, Y. & Belen’kii, L. (2014) The Literature of heterocyclic chemistrys. Advances in Heterocyclic Chemistry, 11(1), 147-274. https://doi.org/10.1016/B978-0-12-420160-6.00004-5.
Evidente, A. et al. (1994) Fusapyrone and deoxyfusapyrone, two antifungal dyrones from Fusarium semitectum. Natural Toxins, 2 (1), 4-13. https://doi.org/10.1002/nt.2620020103.
Firakova, S. et al. (2008). Enniatins produced by Fusarium dimerum, an endophytic fungal strain. Pharmazie, 63 (1),539-541. https://doi.org/10.1691/ph.2008.7831.
Hilário, F. et al. (2017). Antimicrobial screening of endophytic Fungi isolated from the aerial parts of Paepalanthus chiquitensis (Eriocaulaceae) led to the isolation of secondary metabolites produced by Fusarium fujikuroi. Journal of the Brazilian Chemical Society, 28 (8), 1389-1395. https://doi.org/10.21577/0103-5053.20160312.
Hiramatsu, F. et al. (2006). Isolation and structure elucidation of neofusapyrone from a marine-derived Fusarium species, and structural revision of fusapyrone and deoxyfusapyrone. The Journal of Antibiotics, 59 (11), 704-709. https://doi.org/10.1038/ja.2006.94.
Hussain, H. et al. (2015) Antimicrobial constituents from endophytic fungus Fusarium sp. Asian Pacific Journal of Tropical Disease, 5 (3), 186-189. https://doi.org/10.1016/S2222-1808(14)60650-2.
Hüttner, S. et al. (2020). Recent advances in the intellectual property landscape of filamentous fungi. Fungal Biol Biotechnol, 7 (16),1-17. https://doi.org/10.1186/s40694-020-00106-z.
Ibrahim, S.R.M. et al. (2018a). Fusarithioamide B, a new benzamide derivative from the endophytic fungus Fusarium chlamydosporium with potent cytotoxic and antimicrobial activities. Bioorganic & Medicinal Chemistry, 26 (3), 786-790. https://doi.org/10.1016/j.bmc.2017.12.049
Ibrahim, S.R.M. et al. (2018b). Fusaripeptide A: new antifungal and anti-malarial cyclodepsipeptide from the endophytic fungus Fusarium sp. Journal of Asian Natural Products Research, 20 (1),75-85. https://doi.org/10.1080/10286020.2017.1320989.
Ibrahim, S.R.M. et al. (2018c). Fusaristerol A: A new cytotoxic and antifungal ergosterol fatty acid ester from the endophytic fungus Fusarium sp. associated with Mentha longifolia roots. Pharmacognosy Magazine, 14 (16), 308-311. https://doi.org/10.4103/pm.pm_113_18.
Ibrahim, S.R.M. et al. (2016). Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochemical and Biophysical Research Communications, 479 (2), 211-216. https://doi.org/10.1016/j.bbrc.2016.09.041.
Ibrahim, S.R.M. et al. (2019). New antifungal aminobenzamide derivative from the endophytic fungus Fusarium sp. Phcog Mag, 15 (1), 204-207. https://doi.org/10.4103/pm.pm_476_18.
Inokosh, J. et al. (2013). Epi-trichosetin, a new undecaprenyl pyrophosphate synthase inhibitor, produced by Fusarium oxysporum FKI-4553. The Journal of Antibiotics, 66 (13), 549-554. https://doi.org/10.1038/ja.2013.44.
Jain, P., & Joshi, H. (2012). Coumarin: chemical and pharmacological profile. Journal of Applied Pharmaceutical Science, 2 (6), 236-240. https://doi.org/10.7324/JAPS.2012.2643.
Jiang, C-X. et al. (2019). Isolation, identification, and activity evaluation of chemical constituents from soil fungus Fusarium avenaceum SF-1502 and endophytic fungus Fusarium proliferatum AF-04. Journal of Agricultural and Food Chemistry, 67 (19), 1839-1846. https://doi.org/ 10.1021/acs.jafc.8b05576
Jin, Z et al. (2017). Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng. Natural Product Research, 31 (22), 2700-2703. https://doi.org/10.1080/14786419.2017.1292265.
Khan, N et al. (2018). Endophytic Fusarium solani: A rich source of cytotoxic and antimicrobial napthaquinone and aza-anthraquinone derivative. Toxicology Reports, 5 (1), 970-976. https://doi.org/10.2174/1389450117666160719095517.
Kornsakulkarn, J. et al. (2011). Dihydronaphthalenones from endophytic fungus Fusarium sp. BCC14842. Tetrahedron, 67 (39), 7540-7547. https://doi.org/ 10.1016/j.tet.2011.07.078.
Kundu, A., Mandal, A., Saha, S., Pratibha, P. & Walia, S. (2020). Fungicidal activity and molecular modeling of fusarubin analogues from Fusarium oxysporum. Toxicological & Environmental Chemistry, 102 (1-4), 78-91. https://doi.org/10.1080/02772248.2020.1770253.
Kyekyeku, J.O. et al. (2019). Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10. Fitoterapia, 119 (1), 108-114. https://doi.org/10.1016/j.fitote.2017.04.007.
Li, M., Yu R., Bai, X. Wang H. & Zhang, H. (2020). Fusarium: a treasure trove of bioactive secondary metabolites. Natural Product Reports,10 (1), 1039-1060. https://doi.org/10.1039/D0NP00038H.
Li, S.; et al. (2014). Phytotoxic and antibacterial metabolites from Fusarium proliferatum ZS07 isolated from the gut of long-horned grasshoppers. Journal of Agricultural and Chemistry, 62 (1), 8997-9001. https://doi.org/10.1021/jf502484n.
Liao, Y. et al. (2021). Saponin surfactants used in drug delivery systems: A new application for natural medicine components. International Journal of Pharmaceutics, 603 (15), 1207-1209. https://doi.org/10.1016/j.ijpharm.2021.120709.
Little, R.F. & Hertweck, C. (2022) Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Royal society of Chemistry, 39 (1), 163-205. https://doi.org/10.1039/D1NP00035G.
Liu, X-B et al. (2019). Secondary metabolites from the endophytics fungus Fusarium equiseti and their antibacterial activities. Chemistry of Natural Compounds, 55(6), 1141-1144. https://doi.org/10.1007/s10600-019-02915-0.
Ma, X. et al. (2020). A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds. European Journal of Pharmacology, 88 (5), 1735-1738. https://doi.org/10.1016/j.ejphar.2020.173578.
Mabkhot, Y.N. et al. (2014). Synthesis and biological evaluation of 2-aminobenzamide derivatives as antimicrobial agents: opening/closing pharmacophore Site. International Journal of Molecular Sciences, 15 (3), 5115-5127. https://doi.org/ 10.3390/ijms15035115
Mahizan, N.A. et al. (2019). Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules, 24 (14), 2631-2436. https://doi.org/10.3390/molecules24142631
Marcinkevicius, K. et al. (2019). Phytochemical investigation and biological activities of Fusarium sp. An entomogenous fungus. Biocatalysis and Agricultural Biotechnology, 18 (1), 1010-1018. https://doi.org/10.1016/j.bcab.2019.101084.
Martins, I.M.; et al. (2011). Differential activities of three families of specific β (1,3) glucan synthase inhibitors in wild-type and resistant strains of fission yeast. The Journal of Biological Chemistry, 289 (5), 3484-3496. https://doi.org
Marín, C., Torre, D., Furci, G., Godoy, R. & Palfner, G. (2018) Estado del arte de la conservación del reino Fungi em Chile. Conservación, gestión y manejo de áreas silvestres protegidas, 7 (1), 98-115. https://doi.org/10.1074/jbc.M110.174300.
Masaphy, S.A. (2014). A novel echinocandin MIG0310 with anticandida activity from newly isolated Fusarium sp. strain MS-R1. Journal of Applied Microbiology, 116 (6), 1458–1464. https://doi.org/10.1111/jam.12493.
Mohammed, G.J.; Hameed, I.H. & Kamal, S.A. (2018). Analysis of methanolic extract of Fusarium chlamydosporum using GC-MS technique and evaluation of its antimicrobial activity. Indian Journal of Public Health Research & Development, 9 (3), 229-234. https://doi.org/10.5958/0976-5506.2018.00214.0.
Mone, N. et al. (2021). Naphthoquinones and their derivatives: emerging trends in combating microbial pathogens. Coatings, 11 (4), 434-439. https://doi.org/10.3390/coatings11040434.
Moonjely, S. (2022). Fungi: Essential Elements in the Ecosystems. Fungal Biology, 1 (1), 19-35, 2022. https://doi.org/10.1007/978-3-030-89664-5_2
Moreira, C.S. et al. (2016) Searching for a potential antibacterial lead structure against bacterial biofilms among new naphthoquinone compounds. Journal Applie Microbiology, 122 (3), 651-662. https://doi.org/10.1111/jam.13369.
Nenkep, V. et al. (2010). Induced production of bromomethylchlamydosporols A and B from the marine-merived Fungus Fusarium tricinctum. Journal Natural Products, 73 (12), 2061-2063. https://doi.org/10.1021/np1005289.
Nisa, S.; et al. (2020). Identification and bioactivities of two endophytic Fungi Fusarium fujikuroi and Aspergillus tubingensis from foliar parts of Debregeasia salicifolia. Arabian Journal for Science and Engineering, 45 (1), 4477-4487. https://doi.org/10.1007/s13369-020-04454-1.
Niu, S. et al. (2019). Fusarisolins A–E, polyketides from the marine-derived fungus Fusarium solani H918. Marine Drugs, 17 (2), 125-137. https://doi.org/10.3390/md17020125.
Nowrousian, M. (2018). Genomics and transcriptomics to study fruiting body development: An update. Fungal Biology Reviews, 32 (4), 231-235. https://doi.org/10.1016/j.fbr.2018.02.004.
Onyewu, C. et al. (2007). Targeting the calcineurin pathway enhances ergosterol biosynthesis inhibitors against trichophyton mentagrophytes in vitro and in a human skin infection model. Antimicrob Agents Chemother, 51 (10), 3743-3746. https://doi.org/10.1128/AAC.00492-07.
Pan, J-H. et al. (2011). Antimycobacterial activity of fusaric acid from a mangrove endophyte and its metal complexes. Archives of Pharmacal Research, 34 (7), 1177-1181. https://doi.org/10.1007/s12272-011-0716-9.
Pan, R., Bai, X., Chen, J., Zhang, H. & Wang, H. (2019). Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: A literature review. Frontiers in Microbiology, 10 (294), 1-20. https://doi.org/ 10.3389/fmicb.2019.00294.
Piska, F.; Teruna, H.Y. & Saryono, Y. (2020). Terpenoid as antibacterial produced by endophyte Fusarium oxysporum LBKURCC41 from Dahlia variabilis Tuber. Journal of Physics, 55 (16), 2034-2039. https://doi.org/10.1088/1742-6596/1655/1/012034.
Ratnaweera, P.B., De Silva, E.D., Williams, D.E. & Andersen, R.J. (2015). Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complementary & Alternative Medicine, 220 (15), 1-7. https://doi.org/10.1186/s12906- 015-0722-4.
Ravichandiran, P. et al. (2019). 1,4-Naphthoquinone analogues: potent antibacterial agents and mode of action evaluation. Molecules, 24 (7), 1437-1440. https://doi.org/ 10.3390/molecules24071437.
Renner, M.K., Jensen, P.R. & Fenical, W. (1998). Neomangicols: structures and absolute stereochemistries of unprecedented halogenated sesterpenes from a marine fungus of the genus Fusarium. Journal Organic Chemistry, 63 (1), 8346-8354. https://doi.org/10.1021/jo981226b.
Rodrígues, M., Cabrera, G. & Godeas, A. (2005). Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. Journal of Applied Microbiology, 100(6), 575–586. https://doi.org/10.1111/j.1365-2672.2005.02824.x.
Roig, M. et al. (2014). Antibacterial activity of the emerging Fusarium mycotoxins enniatins A, A1, A2, B, B1 and B4 on probiotic microorganisms. Toxicon, 85 (1),1-4. https://doi.org/10.1016/j.toxicon.2014.04.007
Romano, S., Stephen, J. Patry, S. & Dobson, A. (2018). Extending the “One Strain Many Compounds” (OSMAC) principle to marine microorganisms. Marine Drugs, 16 (7), 244-254. https://doi.org/10.3390/md16070244.
Saetang, P. et al. (2016). β-Resorcylic macrolide and octahydronaphthalene derivatives from a seagrass-derived fungus Fusarium sp. PSU-ES123. Tetrahedron, 72 (41), 6421-6427. https://doi.org/10.1016/j.tet.2016.08.048.
Schwarz, P. & Dannaoui, E. (2020). In vitro Interaction between isavuconazole and tacrolimus, cyclosporin A, or sirolimus against Aspergillus Species. Journal Fungi, 6 (3), 103-113. https://doi.org/10.3390/jof6030103.
Shah, A. et al. (2016). Discovery of anti-microbial and anti-tubercular moleculesfrom Fusarium solani: an endophyte of Glycyrrhiza glabra. Journal of Applied Microbiology I, 122 (5), 1168-1176. https://doi.org/10.1111/jam.13410.
Sharifi-rad, J. et al. (2021). Natural coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. Oxidative Medicine and Cellular Longevity, 1 (1),20-39. https://doi.org/10.1155/2021/6492346.
Shi, S. et al. (2018). Biological activity and chemical composition of the endophytic fungus Fusarium sp. TP-G1 obtained from the root of Dendrobium officinale Kimura et. migo. Records of Natural products, 12 (6), 549-556. https://doi.org/10.25135/rnp.62.17.12.201.
Shiono, Y. et al. (2013). A polyketide metabolite from endophytic Fusarium equiseti in a medicinal plant. Zeitschrift für Naturforschung B, 68 (3), 289-292. https://doi.org/10.5560/znb.2013-3014.
Sibero, M.T. et al. (2019). Two new aromatic polyketides from a sponge-derived Fusarium. Beilstein Journal of Organic Chemistry, 15 (1), 2941-2947. https://doi.org/10.3762/bjoc.15.289.
Sieniawska, E. et al. (2016). Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Medical Principles and Practice, 26 (1), 108-112. https://doi.org/10.1159/000454680.
Siqueira, A.C.O. et al. (2020). Multi-trait biochemical features of Metarhizium Species and their activities that stimulate the growth of tomato plants. Frontiers in Sustainable Food Systems, 4 (1), 20-35. https://doi.org/10.3389/fsufs.2020.00137.
Son, S. et al. (2008). Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. Journal of Applied Microbiology, 104 (1), 692-698. https://doi.org/10.1111/j.1365- 2672.2007.03581. x.
Souza, T.B. et al. (2015). Synthesis and antifungal activity of palmitic acid-based neoglycolipids related to papulacandin D. Química Nova, v. 38, n. 10, p. 150-156. https://doi.org/10.5935/0100- 4042.20150156.
Supratman, U. et al. (2019). New naphthoquinone derivatives from Fusarium napiforme of a mangrove plant. Natural Product Research, 35 (9), 1406-1412. https://doi.org/10.1080/14786419.2019.1650358.
Suzuki M., Nishida, N., Ishihara, A. & Nakajima, H. (2013). New 3-O-Alkyl-4a,10a-dihydrofusarubins produced by Fusarium sp. Mj-2. Bioscience, Biotechnology, and Biochemistry, 77 (2), 271-275. https://doi.org/10.1271/bbb.120670.
Sánchez-calvo, J.M. et al. (2016) synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure–activity relationship study. Medicinal Chemistry Research, 25 (1), 1274-1285. https://doi.org/10.1007/s00044-016-1550-x.
Tan, N.; et al. (2008). A copper coordination compound produced by a marina fungus Fusarium sp. ZZF51 with biosorption of Cu (II) ions. Chinese Journal of Chemistry, 26 (8), 516-521. https://doi.org/10.1002/cjoc.200890097.
Tchoukoua, A. et al. (2018). Structure elucidation of new fusarielins from Fusarium sp. and their antimicrobial activity. Magnetic Resonance in Chemistry, 56 (1), 32-36. https://doi.org/10.1002/mrc.4662.
Toghueo, R. (2019). Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology, 11 (1),1-21. https://doi.org/10.1080/21501203.2019.1645053.
Tsuchinari, M. et al. (2007). Fusapyridons A and B, Nnovel pyridone alkaloids from an endophytic fungus, Fusarium sp. YG-45. Zeitschrift für Naturforschung B, 62 (1),1203-1207. https://doi.org/10932–0776 / 07 / 0900–1203.
Urbaniak, M. et al. (2020). Cyclodepsipeptide biosynthesis in Hypocreales Fungi and sequence divergence of the non-ribosomal peptide synthase genes. Pathogens, 9 (7), 552-557. https://doi.org/10.3390/pathogens9070552.
Venkateswarulu, N., Chari, P.V., Basha, S.K.T. & Vijaya, T. (2017). Isolation and purification of (E) -3- (2, 3- dihydroxyphenyl) acrylic acid fromendophytic fungi Fusarium equseti EF-32 and its anti-candidal and anticancer activities. Biocatalysis and Agricultural Biotechnology, 11 (1), 294-301. https://doi.org/10.1016/j.bcab.2017.07.017.
Wang, Q-X. et al. (2011). Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia, 82 (5), 77-781. https://doi.org/10.1016/j.fitote.2011.04.002.
Wang, X., Gong, X., Li, P., Lai, D. & Zhou, L. (2018). Structural diversity and biological activities of cyclic depsipeptides from Fungi. Molecules, 23 (1), 169-174. https://doi.org/10.3390/molecules23010169.
Wang, Y-S. et al. (2016). Complete 1 H-NMR and 13C-NMR spectral assignment of five malonyl ginsenosides from the fresh flower buds of Panax ginseng. Journal of Ginseng Research, 40 (3), 245-250. https://doi.org/10.1016/j.jgr.2015.08.003.
Wellington, K., Nyoka, N. & Mcgaw, L. (2019). Investigation of the antibacterial and antifungal activity of thiolated naphthoquinones. Drug Development Research, 80 (3). https://doi.org/10.1002/ddr.21512.
Zhaer, A.M. et al. (2015). A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda. The Journal of Antibiotics, 68 (1), 197-200. https://doi.org/10.1038/ja.2014.129.
Zhang, et al. (2016). Isolation and identification of the antimicrobial agent beauvericin from the endophytic Fusarium oxysporum 5-19 with NMR and ESI-MS/MS. BioMed Research International, 2016 (1), 1-4. https://doi.org/10.1155/2016/1084670.
Zhang, J. et al. (2015). Fusartricin, a sesquiterpenoid ether produced by an endophytic fungus Fusarium tricinctum Salicorn 19. European Food Research and Technology, 240(1), 805-814. https://doi.org/10.1007/s00217-014-2386- 6
Zhang, et al. (2011). Chemical composition and antimicrobial activity of the volatile oil from Fusarium tricinctum, the endophytic fungus in Paris polyphylla var. yunnanensis. Natural Product Comunications, 6, (11), 1759-1762. https://doi.org/10.1177/1934578X1100601146.
Zhang, H., Ma, Y., & Liu, R. (2012a). Antimicrobial additives from endophytic fungus Fusarium solani of Ficus carica. Applied Mechanics and Materials, 178 (1), 783-786. https://doi.org/10.4028/www.scientific.net/AMM.178-181.783.
Zhang, H., Ma, Y., Liu, R. (2012b) Antimicrobial materials derived from the endophytic fungus Fusarium sp. of Eucommia ulmoides. Advanced Materials Research, 531 (1), 346-349. https://doi.org/10.4028/www.scientific.net/AMR.531.346.
Zhao, D-L. et al. (2018). Anti-phytopathogenic and cytotoxic activities of crude extracts and secondary metabolites of marine-derived Fungi. Marine Drugs, 16 (36), 2-15. https://doi.org/10.3390/md16010036.
Zhu, X. et al. (2018). Fusarihexins A and B: novel cyclic hexadepsipeptides from the mangrove endophytic fungus Fusarium sp. R5 with antifungal activities. Planta Medica, 84 (18),1355-1362. https://doi.org/10.1055/a-0647- 7048.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Gillane Rosas Batista; Maxwel Adriano Abegg; Ranieri Campos
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.