Renderización tridimensional del hueso esfenoides de adolescentes usando el Sistema de Control de Imágenes Médicas Interactivas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i9.31874

Palabras clave:

Puntos anatómicos de referencia; Hueso esfenoides; Software.

Resumen

El objetivo principal de este estudio fue reconstruir tridimensionalmente (3D) el hueso esfenoides de adolescentes con el programa informático Materialise Mimics para comprobar la precisión y fiabilidad de las mediciones craneométricas realizadas con el programa. El estudio se llevó a cabo de acuerdo con las directrices del Strengthening the Reporting of Observational studies in Epidemiology (STROBE). Se realizó una tomografía computarizada de haz cónico (CBCT) a los adolescentes antes del tratamiento de ortodoncia como parte de los registros de ortodoncia. Las imágenes CBCT se exportaron como archivos DICOM (Digital Imaging and Communication in Medicine), en un formato universal, con un tamaño de vóxel de 0,3 mm y el hueso esfenoides se renderizó tridimensionalmente con el software Materialise Mimics. Se realizaron diez mediciones del esfenoides por triplicado por dos examinadores entrenados. La población estudiada estaba compuesta por 26 adolescentes, 16 mujeres (61,5%) y 10 hombres (38,5%) con una edad media de 12,5 años (SD= 1,7). Se realizaron 60 mediciones y la precisión intra e inter-examinadores reveló un alto grado de reproducibilidad de los datos (prueba Kappa superior a 0,90). La reconstrucción y la representación de las imágenes obtenidas por el CBTC permitieron medir los detalles anatómicos del hueso esfenoides con una reproducibilidad muy elevada. El software Materialise Mimics permite analizar los detalles de las estructuras y analizar las piezas ferramentadas para otimizar los análisis craneométricos.

Biografía del autor/a

Nathaly Dias Morais, Positivo University

 

 

Citas

Chou, S. T., Chen, C. M., Chen, P. H., Chen, Y. K., Chen, S. C., & Tseng, Y. C. (2021). Morphology of Sella Turcica and Bridging Prevalence Correlated with Sex and Craniofacial Skeletal Pattern in Eastern Asia Population: CBCT Study. BioMed research international, 2021, 6646406. https://doi.org/10.1155/2021/6646406

Er, K., Schmieder, K., Brenke, C., Miller, D., Parpaley, Y., & Gierthmuehlen, M. (2020). Brainatomy: A Novel Way of Teaching Sphenoid Bone Anatomy With a Simplified 3-Dimensional Model. World neurosurgery, 135, e50–e70. https://doi.org/10.1016/j.wneu.2019.10.128

Franklin, D., Cardini, A., O'Higgins, P., Oxnard, C. E., & Dadour, I. (2008). Mandibular morphology as an indicator of human subadult age: geometric morphometric approaches. Forensic science, medicine, and pathology, 4(2), 91–99. https://doi.org/10.1007/s12024-007-9015-7

Fuyamada, M., Nawa, H., Shibata, M., Yoshida, K., Kise, Y., Katsumata, A., Ariji, E., & Goto, S. (2011). Reproducibility of landmark identification in the jaw and teeth on 3-dimensional cone-beam computed tomography images. The Angle orthodontist, 81(5), 843–849. https://doi.org/10.2319/010711-5.1

González-José, R., Van Der Molen, S., González-Pérez, E., & Hernández, M. (2004). Patterns of phenotypic covariation and correlation in modern humans as viewed from morphological integration. American journal of physical anthropology, 123(1), 69–77. https://doi.org/10.1002/ajpa.10302

Karlo, C. A., Stolzmann, P., Habernig, S., Müller, L., Saurenmann, T., & Kellenberger, C. J. (2010). Size, shape and age-related changes of the mandibular condyle during childhood. European radiology, 20(10), 2512–2517. https://doi.org/10.1007/s00330-010-1828-1

Katkar, R. A., Taft, R. M., & Grant, G. T. (2018). 3D Volume Rendering and 3D Printing (Additive Manufacturing). Dental clinics of North America, 62(3), 393–402. https://doi.org/10.1016/j.cden.2018.03.003

Li, J., Zhang, H., Yin, P., Su, X., Zhao, Z., Zhou, J., Li, C., Li, Z., Zhang, L., & Tang, P. (2015). A New Measurement Technique of the Characteristics of Nutrient Artery Canals in Tibias Using Materialise's Interactive Medical Image Control System Software. BioMed research international, 2015, 171672. https://doi.org/10.1155/2015/171672

Lieberman, D. E., McBratney, B. M., & Krovitz, G. (2002). The evolution and development of cranial form in Homosapiens. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1134–1139. https://doi.org/10.1073/pnas.022440799

Lou, L., Lagravere, M. O., Compton, S., Major, P. W., & Flores-Mir, C. (2007). Accuracy of measurements and reliability of landmark identification with computed tomography (CT) techniques in the maxillofacial area: a systematic review. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 104(3), 402–411. https://doi.org/10.1016/j.tripleo.2006.07.015

Naji, P., Alsufyani, N. A., & Lagravère, M. O. (2014). Reliability of anatomic structures as landmarks in three-dimensional cephalometric analysis using CBCT. The Angle orthodontist, 84(5), 762–772. https://doi.org/10.2319/090413-652.1

Patel, C. R., Fernandez-Miranda, J. C., Wang, W. H., & Wang, E. W. (2016). Skull Base Anatomy. Otolaryngologic clinics of North America, 49(1), 9–20. https://doi.org/10.1016/j.otc.2015.09.001

Ramos, B. C., Manzi, F. R., & Vespasiano, A. I. (2021). Volumetric and linear evaluation of the sphenoidal sinus of a Brazilian population, in cone beam computed tomography. Journal of forensic and legal medicine, 77, 102097. https://doi.org/10.1016/j.jflm.2020.102097

Roomaney, I. A., & Chetty, M. (2020). Sella Turcica Morphology in Patients With Genetic Syndromes: Protocol for a Systematic Review. JMIR research protocols, 9(11), e16633. https://doi.org/10.2196/16633

Rupa, K., Chatra, L., Shenai, P.K., Veena, K.M., Rao, P.K., Prabhu, R.V., Kushraj, T., Shetty, P.R., & Hameed, S. (2015). Gonial angle and ramus height as sex determinants: A radiographic pilot study. Journal of Cranio-Maxillary Diseases, 4, 111 - 116. https://doi.org/10.4103/2278-9588.163247

Sathyanarayana, H. P., Kailasam, V., & Chitharanjan, A. B. (2013). Sella turcica-Its importance in orthodontics and craniofacial morphology. Dental research journal, 10(5), 571–575.

Schlicher, W., Nielsen, I., Huang, J. C., Maki, K., Hatcher, D. C., & Miller, A. J. (2012). Consistency and precision of landmark identification in three-dimensional cone beam computed tomography scans. European journal of orthodontics, 34(3), 263–275. https://doi.org/10.1093/ejo/cjq144

Šidlauskas, M., Šalomskienė, L., Andriuškevičiūtė, I., Šidlauskienė, M., Labanauskas, Ž., Vasiliauskas, A., Kupčinskas, L., Juzėnas, S., & Šidlauskas, A. (2016). Heritability of mandibular cephalometric variables in twins with completed craniofacial growth. European journal of orthodontics, 38(5), 493–502. https://doi.org/10.1093/ejo/cjv062

Shin, D. S., Lee, S., Park, H. S., Lee, S. B., & Chung, M. S. (2015). Segmentation and surface reconstruction of a cadaver heart on Mimics software. Folia morphologica, 74(3), 372–377. https://doi.org/10.5603/FM.2015.0056

Shrestha, G. K., Pokharel, P. R., Gyawali, R., Bhattarai, B., & Giri, J. (2018). The morphology and bridging of the sella turcica in adult orthodontic patients. BMC oral health, 18(1), 45. https://doi.org/10.1186/s12903-018-0499-1

Singh, P., Hung, K., Ajmera, D. H., Yeung, A., von Arx, T., & Bornstein, M. M. (2021). Morphometric characteristics of the sphenoid sinus and potential influencing factors: a retrospective assessment using cone beam computed tomography (CBCT). Anatomical science international, 96(4), 544–555. https://doi.org/10.1007/s12565-021-00622-x

von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., & STROBE Initiative (2008). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Journal of clinical epidemiology, 61(4), 344–349. https://doi.org/10.1016/j.jclinepi.2007.11.008

Descargas

Publicado

10/07/2022

Cómo citar

LISBOA, L. E. de O.; CARELLI, J.; MORAIS, N. D. .; MORO, A.; KÜCHLER, E. C.; BRANCHER, J. A.; FOGGIATTO, J. A.; TORRES, M. F. P. Renderización tridimensional del hueso esfenoides de adolescentes usando el Sistema de Control de Imágenes Médicas Interactivas . Research, Society and Development, [S. l.], v. 11, n. 9, p. e29311931874, 2022. DOI: 10.33448/rsd-v11i9.31874. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31874. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud