Susceptibilidad del eje hipotálamo-pituitario-tiroideo a las isoflavonas de soja

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i9.32089

Palabras clave:

Isoflavonas; Disruptores endócrinos; Glándula tiroides; Hormonas tiroideas.

Resumen

El mayor consumo de productos a base de soya puede estar relacionado con problemas de salud, ya que el contenido de isoflavonas consumidas diariamente pasa a representar niveles capaces de interferir con la homeostasis corporal, actuando como un disruptor químico endocrino. La interferencia causada por las isoflavonas en el eje hipotálamo-pituitario-tiroideo (HHT) puede afectar la producción de hormonas tiroideas al interactuar con los receptores de estrógenos ubicados en la tiroides, además de influir en la acción de las desyodasas para la conversión hormonal en los tejidos periféricos. Así, el objetivo de esta revisión fue resaltar los posibles cambios provocados por el consumo de isoflavonas y su impacto en la producción de hormonas tiroideas. Para ello se utilizaron plataformas de búsqueda como PubMed, Science Direct y Google Scholar. Los filtros de búsqueda que limitan el año de publicación de los artículos utilizados como referencia no se aplicaron en esta investigación debido a la relevancia de los estudios iniciales que abordan la relación entre las isoflavonas/soja y la disrupción endocrina. Se evidenciaron los efectos de la exposición a las isoflavonas de soja (ISOF) sobre las funciones tiroideas relacionadas con el hipotiroidismo subclínico.

Citas

Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., & Fukami, Y. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases. Journal of Biological Chemistry, 262(12), 5592–5595. https://doi.org/https://doi.org/10.1016/S0021-9258(18)45614-1

Arnal, J. F., Lenfant, F., Metivier, R., Flouriot, G., Henrion, D., Adlanmerini, M., Fontaine, C., Gourdy, P., Chambon, P., Katzenellenbogen, B., & Katzenellenbogen, J. (2017). Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications. Physiological Reviews, 97(3), 1045–1087. https://doi.org/10.1152/physrev.00024.2016

Bai, W., Wang, C., & Ren, C. (2014). Intakes of total and individual flavonoids by US adults. International Journal of Food Sciences and Nutrition, 65(1), 9–20. https://doi.org/10.3109/09637486.2013.832170

Barrett, J. R. (2006). The science of soy: what do we really know? National Institute of Environmental Health Sciences.

Bennetts, H. W., Uuderwood, E. J., & Shier, F. L. (1946). a Specific Breeding Problem of Sheep on Subterranean Clover Pastures in Western Australia. Australian Veterinary Journal, 22(1), 2–12. https://doi.org/10.1111/j.1751-0813.1946.tb15473.x

Bernal, J., Guadaño-Ferraz, A., & Morte, B. (2015). Thyroid hormone transporters—functions and clinical implications. Nature Reviews Endocrinology, 11(7), 406–417. https://doi.org/10.1038/nrendo.2015.66

Bianco, A. C., & Kim, B. W. (2006). Deiodinases: Implications of the local control of thyroid hormone action. In Journal of Clinical Investigation (Vol. 116, Issue 10, pp. 2571–2579). https://doi.org/10.1172/JCI29812

Brix K, Lemansky P, H. v. (1996). Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology.

Bustamante-Barrientos, F. A., Méndez-Ruette, M., Ortloff, A., Luz-Crawford, P., Rivera, F. J., Figueroa, C. D., Molina, L., & Bátiz, L. F. (2021). The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Frontiers in Cellular Neuroscience, 15(March), 1–19. https://doi.org/10.3389/fncel.2021.636176

Cederroth, C. R., & Nef, S. (2009). Soy, phytoestrogens and metabolism: A review. Molecular and Cellular Endocrinology, 304(1–2), 30–42. https://doi.org/10.1016/j.mce.2009.02.027

Chen, G., Vlantis, A., Zeng, Q., & van Hasselt, C. (2008). Regulation of Cell Growth by Estrogen Signaling and Potential Targets in Thyroid Cancer. Current Cancer Drug Targets, 8(5), 367–377. https://doi.org/10.2174/156800908785133150

Citterio, C. E., Targovnik, H. M., & Arvan, P. (2019). The role of thyroglobulin in thyroid hormonogenesis. In Nature Reviews Endocrinology (Vol. 15, Issue 6, pp. 323–338). Nature Research. https://doi.org/10.1038/s41574-019-0184-8

Csaba, G. (2018). Effect of endocrine disruptor phytoestrogens on the immune system: Present and future. Acta Microbiologica et Immunologica Hungarica, 65(1), 1–14. https://doi.org/10.1556/030.65.2018.018

Day, A. J., Cañada, F. J., Díaz, J. C., Kroon, P. A., McLauchlan, R., Faulds, C. B., Plumb, G. W., Morgan, M. R. A., & Williamson, G. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters, 468(2–3), 166–170. https://doi.org/10.1016/S0014-5793(00)01211-4

Divi, R. L., Chang, H. C., & Doerge, D. R. (1997). Anti-thyroid isoflavones from soybean. Isolation, characterization, and mechanisms of action. Biochemical Pharmacology, 54(10), 1087–1096. https://doi.org/10.1016/S0006-2952(97)00301-8

Doerge, D. R., & Daniel M Sheehan. (2002). Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect, 110 Suppl 3, 349–353. https://doi.org/10.1289/ehp.02110s3349

Domínguez-López, I., Yago-Aragón, M., Salas-Huetos, A., Tresserra-Rimbau, A., & Hurtado-Barroso, S. (2020). Effects of dietary phytoestrogens on hormones throughout a human lifespan: A review. Nutrients, 12(8), 1–25. https://doi.org/10.3390/nu12082456

Dudovskiy, J. (2016). The ultimate guide to writing a dissertation in business studies: A step-by-step assistance. Pittsburgh, USA, 51.

Fuentes, N., & Silveyra, P. (2019). Estrogen receptor signaling mechanisms. In Advances in Protein Chemistry and Structural Biology (1st ed., Vol. 116). Elsevier Inc. https://doi.org/10.1016/bs.apcsb.2019.01.001

Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., Tujague, M., Ström, A., Treuter, E., Warner, M., & Gustafsson, J. Å. (2007). Estrogen receptors: How do they signal and what are their targets. Physiological Reviews, 87(3), 905–931. https://doi.org/10.1152/physrev.00026.2006

Hüser, S., Guth, S., Joost, H. G., Soukup, S. T., Köhrle, J., Kreienbrock, L., Diel, P., Lachenmeier, D. W., Eisenbrand, G., Vollmer, G., Nöthlings, U., Marko, D., Mally, A., Grune, T., Lehmann, L., Steinberg, P., & Kulling, S. E. (2018). Effects of isoflavones on breast tissue and the thyroid hormone system in humans: a comprehensive safety evaluation. In Archives of Toxicology (Vol. 92, Issue 9). Springer Berlin Heidelberg. https://doi.org/10.1007/s00204-018-2279-8

Ishizuki Y, Hirooka Y, Murata Y, T. K. (1991). The effects on the thyroid gland of soybeans administered experimentally in healthy subjects. Nihon Naibunpi Gakkai Zasshi, 67(5), 622–629. https://doi.org/10.1507/endocrine1927.67.5_622

King, R. A., Broadbent, J. L., & Head, R. J. (1996). Absorption and excretion of the soy isoflavone genistein in rats. Journal of Nutrition, 126(1), 176–182. https://doi.org/10.1093/jn/126.1.176

King, R. A., & Bursill, D. B. (1998). Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. American Journal of Clinical Nutrition, 67(5), 867–872. https://doi.org/10.1093/ajcn/67.5.867

Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. In Molecules (Vol. 24, Issue 6). MDPI AG. https://doi.org/10.3390/molecules24061076

Kuiper, G. G. J. M., Kester, M. H. A., Peeters, R. P., & Visser, T. J. (2005). Biochemical Mechanisms of Thyroid Hormone Deiodination. Thyroid, 15(8), 787–798. https://doi.org/10.1089/thy.2005.15.787

Kuiper, G. G. J. M., Lemmen, J. G., Carlsson, B., Corton, J. C., Safe, S. H., van der Saag, P. T., van der Burg, B., & Gustafsson, J. Å. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 139(10), 4252–4263. https://doi.org/10.1210/endo.139.10.6216

Kulling, S. E., Honig, D. M., Simat, T. J., & Metzler, M. (2000). Oxidative in vitro metabolism of the soy phytoestrogens daidzein and genistein. Journal of Agricultural and Food Chemistry, 48(10), 4963–4972. https://doi.org/10.1021/jf000524i

Lee, A., Beaubernard, L., Lamothe, V., & Bennetau-Pelissero, C. (2019). New evaluation of isoflavone exposure in the french population. Nutrients, 11(10), 1–24. https://doi.org/10.3390/nu11102308

Lee, H.-R., Kim, T.-H., & Choi, K.-C. (2012). Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Laboratory Animal Research, 28(2), 71. https://doi.org/10.5625/lar.2012.28.2.71

Leyland-Jones, B., Gray, K. P., Abramovitz, M., Bouzyk, M., Young, B., Long, B., Kammler, R., Dell’Orto, P., Biasi, M. O., Thürlimann, B., Harvey, V., Neven, P., Arnould, L., Maibach, R., Price, K. N., Coates, A. S., Goldhirsch, A., Gelber, R. D., Pagani, O., … Group, B. I. G. 1-98 C. (2015). ESR1 and ESR2 polymorphisms in the BIG 1-98 trial comparing adjuvant letrozole versus tamoxifen or their sequence for early breast cancer. Breast Cancer Research and Treatment, 154(3), 543–555. https://doi.org/10.1007/s10549-015-3634-6

Lozovaya, V. v., Lygin, A. v., Ulanov, A. v., Nelson, R. L., Daydé, J., & Widholm, J. M. (2005). Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Science, 45(5), 1934–1940. https://doi.org/10.2135/cropsci2004.0567

Markovits, J., Junqua, S., Goldwasser, F., Venuat, A.-M., Luccioni, C., Beaumatin, J., Saucier, J.-M., Bernheim, A., & Jacquemin-Sablon, A. (1995). Genistein resistance in human leukaemic CCRF-CEM cells: Selection of a diploid cell line with reduced DNA topoisomerase II β isoform. Biochemical Pharmacology, 50(2), 177–186. https://doi.org/https://doi.org/10.1016/0006-2952(95)00131-I

Messina, M., Nagata, C., & Wu, A. H. (2006). Estimated Asian adult soy protein and isoflavone intakes. Nutrition and Cancer, 55(1), 1–12. https://doi.org/10.1207/s15327914nc5501_1

Molteni, A., Warpeha, R. L., Brizio Molteni, L., & Fors, E. M. (1981). Estradiol Receptor-binding Protein in Head and Neck Neoplastic and Normal Tissue. Archives of Surgery, 116(2), 207–210. https://doi.org/10.1001/archsurg.1981.01380140053012

Mullur, R., Liu, Y. Y., & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiological Reviews, 94(2), 355–382. https://doi.org/10.1152/physrev.00030.2013

Nakamura, Y., Ohsawa, I., Goto, Y., Tsuji, M., Oguchi, T., Sato, N., Kiuchi, Y., Fukumura, M., Inagaki, M., & Gotoh, H. (2017). Soy isoflavones inducing overt hypothyroidism in a patient with chronic lymphocytic thyroiditis: a case report. Journal of Medical Case Reports, 11(1), 253. https://doi.org/10.1186/s13256-017-1418-9

Nielsen, I. L. F., & Williamson, G. (2007). Review of the factors affecting bioavailability of soy isoflavones in humans. Nutrition and Cancer, 57(1), 1–10. https://doi.org/10.1080/01635580701267677

Pan, W., Ikeda, K., Takebe, M., & Yamori, Y. (2001). Genistein, daidzein and glycitein inhibit growth and DNA synthesis of aortic smooth muscle cells from stroke-prone spontaneously hypertensive rats. Journal of Nutrition, 131(4), 1154–1158. https://doi.org/10.1093/jn/131.4.1154

Paterni, I., Granchi, C., & Minutolo, F. (2017). Risks and benefits related to alimentary exposure to xenoestrogens. Critical Reviews in Food Science and Nutrition, 57(16), 3384–3404. https://doi.org/10.1080/10408398.2015.1126547

Patisaul, H. B. (2017). Endocrine disruption by dietary phyto-oestrogens: Impact on dimorphic sexual systems and behaviours. Proceedings of the Nutrition Society, 76(2), 130–144. https://doi.org/10.1017/S0029665116000677

Pirahanchi, Y., Toro, F., & Jialal, I. (2021). Physiology, Thyroid Stimulating Hormone. StatPearls Publishing, Treasure Island (FL). http://europepmc.org/abstract/MED/29763025

Popa, D.-S., & Rusu, M. E. (2017). Isoflavones: Vegetable Sources, Biological Activity, and Analytical Methods for Their Assessment. Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine. https://doi.org/10.5772/66531

Portulano, C., Paroder-Belenitsky, M., & Carrasco, N. (2014). The Na+/I- Symporter (NIS): Mechanism and medical impact. Endocrine Reviews, 35(1), 106–149. https://doi.org/10.1210/er.2012-1036

Radović, B., Mentrup, B., & Köhrle, J. (2006). Genistein and other soya isoflavones are potent ligands for transthyretin in serum and cerebrospinal fluid. British Journal of Nutrition, 95(6), 1171–1176. https://doi.org/10.1079/bjn20061779

Rendle, K. A., Abramson, C. M., Garrett, S. B., Halley, M. C., & Dohan, D. (2019). Beyond exploratory: A tailored framework for designing and assessing qualitative health research. BMJ Open, 9(8). https://doi.org/10.1136/bmjopen-2019-030123

Renko, K., Schäche, S., Hoefig, C. S., Welsink, T., Schwiebert, C., Braun, D., Becker, N. P., Köhrle, J., & Schomburg, L. (2015). An Improved Nonradioactive Screening Method Identifies Genistein and Xanthohumol as Potent Inhibitors of Iodothyronine Deiodinases. Thyroid, 25(8), 962–968. https://doi.org/10.1089/thy.2015.0058

Rhoden, K. J., Cianchetta, S., Duchi, S., & Romeo, G. (2008). Fluorescence quantitation of thyrocyte iodide accumulation with the yellow fluorescent protein variant YFP-H148Q/I152L. Analytical Biochemistry, 373(2), 239–246. https://doi.org/10.1016/j.ab.2007.10.020

Rizzo, G., & Baroni, L. (2018). Soy, soy foods and their role in vegetarian diets. In Nutrients (Vol. 10, Issue 1). MDPI AG. https://doi.org/10.3390/nu10010043

Roepke, T. K., King, E. C., Reyna-Neyra, A., Paroder, M., Purtell, K., Koba, W., Fine, E., Lerner, D. J., Carrasco, N., & Abbott, G. W. (2009). Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nature Medicine, 15(10), 1186–1194. https://doi.org/10.1038/nm.2029

Rubio, I. G. S., & Medeiros-Neto, G. (2009). Mutations of the thyroglobulin gene and its relevance to thyroid disorders. Current Opinion in Endocrinology, Diabetes and Obesity, 16(5), 373–378. https://doi.org/10.1097/MED.0b013e32832ff218

Rüfer, C. E., Bub, A., Möseneder, J., Winterhalter, P., Stürtz, M., & Kulling, S. E. (2008). Pharmacokinetics of the soybean isoflavone daidzein in its aglycone and glucoside form: A randomized, double-blind, crossover study. American Journal of Clinical Nutrition, 87(5), 1314–1323. https://doi.org/10.1093/ajcn/87.5.1314

Santin, A. P., & Furlanetto, T. W. (2011). Role of estrogen in thyroid function and growth regulation. Journal of Thyroid Research, 2011. https://doi.org/10.4061/2011/875125

Sarasquete, C., Úbeda-Manzanaro, M., & Ortiz-Delgado, J. B. (2018). Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 211(March), 57–67. https://doi.org/10.1016/j.cbpc.2018.05.012

Sathyapalan, T., Manuchehri, A. M., Thatcher, N. J., Rigby, A. S., Chapman, T., Kilpatrick, E. S., & Atkin, S. L. (2011). The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: A randomized, double-blind, crossover study. Journal of Clinical Endocrinology and Metabolism, 96(5), 1442–1449. https://doi.org/10.1210/jc.2010-2255

Setchell, K. D. R., Brown, N. M., Desai, P., Zimmer-Nechemias, L., Wolfe, B. E., Brashear, W. T., Kirschner, A. S., Cassidy, A., & Heubi, J. E. (2001). Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. Journal of Nutrition, 131(4 SUPPL.), 1362–1375. https://doi.org/10.1093/jn/131.4.1362s

Setchell, K. D. R., Brown, N. M., Zimmer-Nechemias, L., Brashear, W. T., Wolfe, B. E., Kirschner, A. S., & Heubi, J. E. (2002). Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. American Journal of Clinical Nutrition, 76(2), 447–453. https://doi.org/10.1093/ajcn/76.2.447

Sharma, S., Kaur, M., Goyal, R., & Gill, B. S. (2014). Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. Journal of Food Science and Technology, 51(3), 551–557. https://doi.org/10.1007/s13197-011-0517-7

Simpson, E. R. (2003). Sources of estrogen and their importance. Journal of Steroid Biochemistry and Molecular Biology, 86(3–5), 225–230. https://doi.org/10.1016/S0960-0760(03)00360-1

Šošić-Jurjević, B., Filipović, B., Wirth, E. K., Živanović, J., Radulović, N., Janković, S., Milošević, V., & Köhrle, J. (2014). Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats. Toxicology and Applied Pharmacology, 278(2), 124–134. https://doi.org/10.1016/j.taap.2014.04.018

Vincent, A., & Fitzpatrick, L. A. (2000). Soy isoflavones: Are they useful in menopause? Mayo Clinic Proceedings, 75(11), 1174–1184. https://doi.org/10.4065/75.11.1174

Watanabe, S., Yamaguchi, M., Sobue, T., Takahashi, T., Miura, T., Arai, Y., Mazur, W., Wähälä, K., & Adlercreutz, H. (1998). Pharmacokinetics of Soybean Isoflavones in Plasma, Urine and Feces of Men after Ingestion of 60 g Baked Soybean Powder (Kinako). The Journal of Nutrition, 128(10), 1710–1715. https://doi.org/10.1093/jn/128.10.1710

Zaheer, K., & Humayoun Akhtar, M. (2017). An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Critical Reviews in Food Science and Nutrition, 57(6), 1280–1293. https://doi.org/10.1080/10408398.2014.989958

Zhang, Y., Wang, G. J., Song, T. T., Murphy, P. A., & Hendrich, S. (1999). Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. Journal of Nutrition, 129(5), 957–962. https://doi.org/10.1093/jn/129.5.957

Publicado

15/07/2022

Cómo citar

DAL FORNO, G. O. .; ROMANO, M. A.; ROMANO, R. M. . Susceptibilidad del eje hipotálamo-pituitario-tiroideo a las isoflavonas de soja. Research, Society and Development, [S. l.], v. 11, n. 9, p. e47011932089, 2022. DOI: 10.33448/rsd-v11i9.32089. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32089. Acesso em: 23 nov. 2024.

Número

Sección

Revisiones