Actividades antipalúdicas de plantas con potencial medicinal: una revisión sistemática de la literatura
DOI:
https://doi.org/10.33448/rsd-v11i9.32389Palabras clave:
Plantas medicinales; Medicina Herbaria; Malaria; Etnobotánica.Resumen
Objetivo: Este es un estudio cualitativo, cuyo objetivo fue investigar la literatura científica sobre especies de plantas potencialmente activas contra Plasmodium sp. Método: Se trata de una revisión sistemática de la literatura, que tuvo como objetivo analizar los artículos más recientes publicados entre los años 2005-2020 en los idiomas: inglés y portugués. Los estudios fueron seleccionados de manera integradora de las siguientes bases de datos: PubMed (Biblioteca Nacional de Medicina), LILACS (Literatura Latinoamericana y del Caribe en Ciencias de la Salud), Science Direct (Explore, científica y médica) y SciELO (Biblioteca Electrónica Científica en Línea). Resultados y discusión: En los estudios de inhibición antiplasmodial se encontraron 115 especies distribuidas en 50 familias botánicas, de las cuales 66 tipos diferentes de extractos mostraron acción en la eliminación de estos parásitos, mientras que 59 de estos extractos fueron inactivos. De este total, las especies más estudiadas pertenecen a las familias Asteraceae y Fabaceae. Además, otras 141 especies botánicas fueron citadas en estudios etnobotánicos en diferentes regiones del mundo. Aponynaceae y Lamiaceae fueron las familias de plantas más representativas entre los estudios enfocados en este tema. Los datos también permitieron comprender cómo el conocimiento popular puede ayudar a establecer descubrimientos científicos sobre plantas con potencial antipalúdico. Además, se identificaron las condiciones ambientales como determinantes para la producción de componentes químicos en estas plantas. Conclusión: Los esfuerzos para identificar plantas con potencial activo en el combate del parásito se han incrementado significativamente en los últimos años; sin embargo, es importante enfatizar que la preservación de la biodiversidad debe ser un aspecto importante de la investigación etnobotánica para garantizar el uso sostenible de los recursos disponibles.
Citas
Abdillah, S., Farida, Y., Kartiningsih, Sandhiutami, N. M. D., & Mohamad, K. (2019). Antimalarial activity and toxicity evaluation of the alkaloid-rich fraction of Momordica charantia fruits. International Journal of Pharmaceutical Sciences and Research, 10(5), 2516–2522. doi: 10.13040/IJPSR.0975-8232.10(5).2516-22
Adams, M., Gschwind, S., Zimmermann, S., Kaiser, M., & Hamburger, M. (2011). Renaissance remedies: Antiplasmodial protostane triterpenoids from Alisma plantago-aquatica L. (Alismataceae). Journal of Ethnopharmacology, 135(1), 43–47. doi: 10.1016/j.jep.2011.02.026
Adia, M. M., Emami, S. N., Byamukama, R., Faye, I., & Borg-Karlson, A.-K. (2016). Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. Journal of Ethnopharmacology, 186, 14–19. doi: 10.1016/j.jep.2016.03.047
Adinortey, M. B., Galyuon, I., & Asamoah, N. O. (2013). Trema orientalis Linn. Blume: A potential for prospecting for drugs for various uses. Pharmacognosy Reviews, 7(13), 67–72. doi: 10.4103/0973-7847.112852
Ajaiyeoba, E. O., Ashidi, J. S., Okpako, L. C., Houghton, P. J., & Wright, C. W. (2008). Inhibition of cholinesterase and amyloid-&bgr; aggregation by resveratrol oligomers from Vitis amurensis. Phytotherapy Research, 22(4), 544–549. doi: 10.1002/ptr
Asase, A., Akwetey, G. A., & Achel, D. G. (2010). Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. Journal of Ethnopharmacology, 129(3), 367–376. doi: 10.1016/j.jep.2010.04.001
Bassat, Q., Maïga-Ascofaré, O., May, J., Clain, J., Mombo-Ngoma, G., Groger, M., Adegnika, A. A., Agobé, J.-C. D., Djimde, A., Mischlinger, J., & Ramharter, M. (2022). Challenges in the clinical development pathway for triple and multiple drug combinations in the treatment of uncomplicated falciparum malaria. Malaria Journal, 21(1), 61. doi: 10.1186/s12936-022-04079-9
Benoit-Vical, F., Grellier, P., Abdoulaye, A., Moussa, I., Ousmane, A., Berry, A., Ikhiri, K., & Poupat, C. (2006). In vitro and in vivo antiplasmodial activity of Momordica balsamina alone or in a traditional mixture. Chemotherapy, 52(6), 288–292. doi: 10.1159/000095960
Bermúdez, M., Moreno-Pérez, D. A., Arévalo-Pinzón, G., Curtidor, H., & Patarroyo, M. A. (2018). Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malaria Journal, 17(1), 301. doi: 10.1186/s12936-018-2456-5
Bero, J., Ganfon, H., Jonville, M.-C., Frédérich, M., Gbaguidi, F., DeMol, P., Moudachirou, M., & Quetin-Leclercq, J. (2009). In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. Journal of Ethnopharmacology, 122(3), 439–444. doi: 10.1016/j.jep.2009.02.004
Bertani, S., Houël, E., Jullian, V., Bourdy, G., Valentin, A., Stien, D., & Deharo, E. (2012). New findings on Simalikalactone D, an antimalarial compound from Quassia amara L. (Simaroubaceae). Experimental Parasitology, 130(4), 341–347. doi: 10.1016/j.exppara.2012.02.013
Bhat, R., & Karim, A. A. (2010). Tongkat Ali (Eurycoma longifolia Jack): A review on its ethnobotany and pharmacological importance. Fitoterapia, 81(7), 669–679. doi: 10.1016/j.fitote.2010.04.006
Bowers, M. D., & Stamp, N. E. (1993). Effects of Plant Age, Genotype and Herbivory on Plantago Performance and Chemistry. Ecology, 74(6), 1778–1791. doi: 10.2307/1939936
Brasil, P., Zalis, M. G., de Pina-Costa, A., Siqueira, A. M., Júnior, C. B., Silva, S., Areas, A. L. L., Pelajo-Machado, M., de Alvarenga, D. A. M., da Silva Santelli, A. C. F., Albuquerque, H. G., Cravo, P., Santos de Abreu, F. V., Peterka, C. L., Zanini, G. M., Suárez Mutis, M. C., Pissinatti, A., Lourenço-de-Oliveira, R., de Brito, C. F. A., … Daniel-Ribeiro, C. T. (2017). Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. The Lancet Global Health, 5(10), 1038–1046. doi: 10.1016/S2214-109X(17)30333-9
Brooks, J. S., & Feeny, P. (2004). Seasonal variation in Daucus carota leaf-surface and leaf-tissue chemical profiles. Biochemical Systematics and Ecology, 32(9), 769–782. doi: 10.1016/j.bse.2004.01.004
Chinsembu, K. C. (2015). Plants as antimalarial agents in Sub-Saharan Africa. Acta Tropica, 152, 32–48. doi: 10.1016/j.actatropica.2015.08.009
Cimanga, R. K., Nsaka, S. L., Tshodi, M. E., Mbamu, B. M., Kikweta, C. M., Makila, F. B.-M., Cos, P., Maes, L., Vlietinck, A. J., Exarchou, V., Tuenter, E., & Pieters, L. (2019). In vitro and in vivo antiplasmodial activity of extracts and isolated constituents of Alstonia congensis root bark. Journal of Ethnopharmacology, 242, 111736. doi: 10.1016/j.jep.2019.02.019
de Souza, G. A. G., da Silva, N. C., de Souza, J., de Oliveira, K. R. M., da Fonseca, A. L., Baratto, L. C., de Oliveira, E. C. P., Varotti, F. de P., & Moraes, W. P. (2017). In vitro and in vivo antimalarial potential of oleoresin obtained from Copaifera reticulata Ducke (Fabaceae) in the Brazilian Amazon rainforest. Phytomedicine, 24, 111–118. doi: 10.1016/j.phymed.2016.11.021
De Villiers, B. J., Van Vuuren, S. F., Van Zyl, R. L., & Van Wyk, B. E. (2010). Antimicrobial and antimalarial activity of Cussonia species (Araliaceae). Journal of Ethnopharmacology, 129(2), 189–196. doi: 10.1016/j.jep.2010.02.014
De Wet, H., Van Heerden, F. R., Van Wyk, B.-E., & Van Zyl, R. L. (2007). Antiplasmodial activity and cytotoxicity of Albertisia delagoensis. Fitoterapia, 78(6), 420–422. doi: 10.1016/j.fitote.2007.02.018
Dell’Agli, M., Galli, G. V., Corbett, Y., Taramelli, D., Lucantoni, L., Habluetzel, A., Maschi, O., Caruso, D., Giavarini, F., Romeo, S., Bhattacharya, D., & Bosisio, E. (2009). Antiplasmodial activity of Punica granatum L. fruit rind. Journal of Ethnopharmacology, 125(2), 279–285. doi: 10.1016/j.jep.2009.06.025
Dike, I. P., Obembe, O. O., & Adebiyi, F. E. (2012). Ethnobotanical survey for potential anti-malarial plants in south-western Nigeria. Journal of Ethnopharmacology, 144(3), 618–626. doi: 10.1016/j.jep.2012.10.002
El Bouzidi, L., Ben Bakrim, W., Mahiou, V., Azas, N., Larhsini, M., Markouk, M., Ollivier, E., & Bekkouche, K. (2017). In vitro antiplasmodial activity of Withania frutescens —Solanaceae. European Journal of Integrative Medicine, 14, 28–31. doi: 10.1016/j.eujim.2017.08.009
Elgorashi, E. E., Drewes, S. E., & Van Staden, J. (2002). Organ-to-organ and seasonal variation in alkaloids from Crinum macowanii. Fitoterapia, 73(6), 490–495. doi: 10.1016/S0367-326X(02)00164-8
Esmaeili, S., Naghibi, F., Mosaddegh, M., Sahranavard, S., Ghafari, S., & Abdullah, N. R. (2009). Screening of antiplasmodial properties among some traditionally used Iranian plants. Journal of Ethnopharmacology, 121(3), 400–404. doi: 10.1016/j.jep.2008.10.041
Evans, W. C. (1996). Trease and Evans’ pharmacognosy (W. Saunders (org.); 14o ed). London ; Philadelphia. 1996.
Ezenyi, I. C., Verma, V., Singh, S., Okhale, S. E., & Adzu, B. (2020). Ethnopharmacology-aided antiplasmodial evaluation of six selected plants used for malaria treatment in Nigeria. Journal of Ethnopharmacology, 254, 112694. doi: 10.1016/j.jep.2020.112694
Fang, Q. M., Zhang, H., Cao, Y., & Wang, C. (2007). Anti-inflammatory and free radical scavenging activities of ethanol extracts of three seeds used as “Bolengguazi”. Journal of Ethnopharmacology, 114(1), 61–65. doi: 10.1016/j.jep.2007.07.024
Feeny, P., & Bostock, H. (1968). Seasonal changes in the tannin content of oak leaves. Phytochemistry, 7(5), 871–880. doi: 10.1016/S0031-9422(00)84845-1
Gbedema, S. Y., Bayor, M. T., Annan, K., & Wright, C. W. (2015). Clerodane diterpenes from Polyalthia longifolia (Sonn) Thw. var. pendula: Potential antimalarial agents for drug resistant Plasmodium falciparum infection. Journal of Ethnopharmacology, 169(July), 176–182. doi: 10.1016/j.jep.2015.04.014
Gobbo-Neto, L., & Lopes, N. P. (2007). Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quimica Nova, 30(2), 374–381. doi: 10.1590/S0100-40422007000200026
Grace, S. ., Logan, B. ., & Adams, W. . (1998). Seasonal diferences in foliar content of chlorogenic acid, a phenylpro antioxidant, in Mahonia repens. Plant Cell Environ, 21(5), 513–521.
Graziose, R., Rojas-Silva, P., Rathinasabapathy, T., Dekock, C., Grace, M. H., Poulev, A., Ann Lila, M., Smith, P., & Raskin, I. (2012). Antiparasitic compounds from Cornus florida L. with activities against Plasmodium falciparum and Leishmania tarentolae. Journal of Ethnopharmacology, 142(2), 456–461. doi: 10.1016/j.jep.2012.05.017
Houël, E., Bertani, S., Bourdy, G., Deharo, E., Jullian, V., Valentin, A., Chevalley, S., & Stien, D. (2009). Quassinoid constituents of Quassia amara L. leaf herbal tea. Impact on its antimalarial activity and cytotoxicity. Journal of Ethnopharmacology, 126(1), 114–118. doi: 10.1016/j.jep.2009.07.037
Inbaneson, S. J., Ravikumar, S., & Suganthi, P. (2012). In vitro antiplasmodial effect of ethanolic extracts of coastal medicinal plants along Palk Strait against Plasmodium falciparum. Asian Pacific Journal of Tropical Biomedicine, 2(5), 364–367. doi: 10.1016/S2221-1691(12)60057-4
Jalal, M. A. F., Read, D. J., & Haslam, E. (1982). Phenolic composition and its seasonal variation in Calluna vulgaris. Phytochemistry, 21(6), 1397–1401. doi: 10.1016/0031-9422(82)80150-7
Jansen, O., Angenot, L., Tits, M., Nicolas, J. P., De Mol, P., Nikiéma, J.-B., & Frédérich, M. (2010). Evaluation of 13 selected medicinal plants from Burkina Faso for their antiplasmodial properties. Journal of Ethnopharmacology, 130(1), 143–150. doi: 10.1016/j.jep.2010.04.032
Jonville, M. C., Kodja, H., Humeau, L., Fournel, J., De Mol, P., Cao, M., Angenot, L., & Frédérich, M. (2008). Screening of medicinal plants from Reunion Island for antimalarial and cytotoxic activity. Journal of Ethnopharmacology, 120(3), 382–386. doi: 10.1016/j.jep.2008.09.005
Julianti, T., De Mieri, M., Ebrahimi, S., Neuburger, M., Zimmermann, S., Kaiser, M., & Hamburger, M. (2013). Potent antiplasmodial agents in Carica papaya L. Planta Medica, 79(13). doi: 10.1055/s-0033-1351832
Kamaraj, C., Kaushik, N. K., Rahuman, A. A., Mohanakrishnan, D., Bagavan, A., Elango, G., Zahir, A. A., Santhoshkumar, T., Marimuthu, S., Jayaseelan, C., Kirthi, A. V., Rajakumar, G., Velayutham, K., & Sahal, D. (2012). Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. Journal of Ethnopharmacology, 141(3), 796–802. doi: 10.1016/j.jep.2012.03.003
Karou, S. D., Tchacondo, T., Ouattara, L., Anani, K., Savadogo, A., Agbonon, A., Attaia, M. Ben, de Souza, C., Sakly, M., & Simpore, J. (2011). Antimicrobial, antiplasmodial, haemolytic and antioxidant activities of crude extracts from three selected Togolese medicinal plants. Asian Pacific Journal of Tropical Medicine, 4(10), 808–813. doi: 10.1016/S1995-7645(11)60199-5
Kim, S., Sakamoto, I., Morimoto, K., Sakata, M., Yamasaki, K., & Tanaka, O. (1981). Seasonal Variation of Saponins, Sucurose and Monosaccharides in Cultivated Ginseng Roots. Planta Medica, 42(06), 181–186. doi: 10.1055/s-2007-971623
Kotepui, M., Kotepui, K. U., De Jesus Milanez, G., & Masangkay, F. R. (2020). Plasmodium spp. mixed infection leading to severe malaria: a systematic review and meta-analysis. Scientific Reports, 10(1), 11068. doi: 10.1038/s41598-020-68082-3
Koudouvo, K., Karou, S. D., Ilboudo, D. P., Kokou, K., Essien, K., Aklikokou, K., de Souza, C., Simpore, J., & Gbéassor, M. (2011). In vitro antiplasmodial activity of crude extracts from Togolese medicinal plants. Asian Pacific Journal of Tropical Medicine, 4(2), 129–132. doi: 10.1016/S1995-7645(11)60052-7
Kovendan, K., Murugan, K., Panneerselvam, C., Aarthi, N., Kumar, P. M., Subramaniam, J., Amerasan, D., Kalimuthu, K., & Vincent, S. (2012). Antimalarial activity of Carica papaya (Family: Caricaceae) leaf extract against Plasmodium falciparum. Asian Pacific Journal of Tropical Disease, 2(SUPPL.1), S306–S311. doi: 10.1016/S2222-1808(12)60171-6
Larayetan, R., Ololade, Z. S., Ogunmola, O. O., & Ladokun, A. (2019). Phytochemical Constituents, Antioxidant, Cytotoxicity, Antimicrobial, Antitrypanosomal, and Antimalarial Potentials of the Crude Extracts of Callistemon citrinus. Evidence-Based Complementary and Alternative Medicine, 2019, 1–14. doi: 10.1155/2019/5410923
Leang, R., Taylor, W. R. J., Bouth, D. M., Song, L., Tarning, J., Char, M. C., Kim, S., Witkowski, B., Duru, V., Domergue, A., Khim, N., Ringwald, P., & Menard, D. (2015). Evidence of Plasmodium falciparum Malaria Multidrug Resistance to Artemisinin and Piperaquine in Western Cambodia: Dihydroartemisinin-Piperaquine Open-Label Multicenter Clinical Assessment. Antimicrobial Agents and Chemotherapy, 59(8), 4719–4726. doi: 10.1128/AAC.00835-15
Marie, T. K. R., Mfouapon, H. M., Kemgne, E. A. M., Mbouna, C. D., Jiatsa, Fokou, V. P. T., Sahal, D., & Boyom, F. F. (2018). Anti-Plasmodium falciparum Activity of Extracts from 10 Cameroonian Medicinal Plants. Medicines, 5(4), 115. doi: 10.3390/medicines5040115
Martinez, L. do N., Rodrigues, F. L. da S., Silva, N. B. da, Santos, E. V. dos, & Costa, J. D. N. (2020). Avaliação etnobotânica das espécies das famílias Asteraceae e Lamiaceae utilizadas com potencial medicinal na região de Porto Velho – Rondônia. Interfaces Científicas Saúde e Ambiente, 8(2), 431–445. doi: 10.17564/2316-3798.2020v8n2
Ménard, D., Khim, N., Beghain, J., Adegnika, A. A., Shafiul-Alam, M., Amodu, O., Rahim-Awab, G., Barnadas, C., Berry, A., Boum, Y., Bustos, M. D., Cao, J., Chen, J.-H., Collet, L., Cui, L., Thakur, G.-D., Dieye, A., Djallé, D., Dorkenoo, M. A., … Mercereau-Puijalon, O. (2016). A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. New England Journal of Medicine, 374(25), 2453–2464. doi: 10.1056/NEJMoa1513137
Menković, N., Šavikin-Fodulović, K., & Savin, K. (2000). Chemical Composition and Seasonal Variations in the Amount of Secondary Compounds in Gentiana lutea Leaves and Flowers. Planta Medica, 66(02), 178–180. doi: 10.1055/s-0029-1243126
Mesia, K., Tona, L., Mampunza, M., Ntamabyaliro, N., Muanda, T., Muyembe, T., Musuamba, T., Mets, T., Cimanga, K., Totté, J., Pieters, L., & Vlietinck, A. (2012). Antimalarial Efficacy of a Quantified Extract of Nauclea pobeguinii Stem Bark in Human Adult Volunteers with Diagnosed Uncomplicated falciparum Malaria. Part 2: A Clinical Phase IIB Trial. Planta Medica, 78(09), 853–860. doi: 10.1055/s-0031-1298488
Mishra, K., Dash, A. P., Swain, B. K., & Dey, N. (2009). Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malaria Journal, 8(1), 26. doi: 10.1186/1475-2875-8-26
Mohanty, S., Srivastava, P., Maurya, A. K., Cheema, H. S., Shanker, K., Dhawan, S., Darokar, M. P., & Bawankule, D. U. (2013). Antimalarial and safety evaluation of Pluchea lanceolata (DC.) Oliv. & Hiern: In-vitro and in-vivo study. Journal of Ethnopharmacology, 149(3), 797–802. doi: 10.1016/j.jep.2013.08.003
Moraes, C. F., Jesus, P. G. de, Chechetto, F., & Machado, V. F. S. (2020). Plantas medicinais e fitoterapia no SUS em Itapeva/SP: integrando saberes e conhecimentos para o cuidado em saúde. Revista Fitos, 14(3), 333–340. doi: 10.32712/2446-4775.2019.898
Mukungu, N., Abuga, K., Okalebo, F., Ingwela, R., & Mwangi, J. (2016). Medicinal plants used for management of malaria among the Luhya community of Kakamega East sub-County, Kenya. Journal of Ethnopharmacology, 194, 98–107. doi: 10.1016/j.jep.2016.08.050
Murebwayire, S., Ingkaninan, K., Changwijit, K., Frédérich, M., & Duez, P. (2009). Triclisia sacleuxii (Pierre) Diels (Menispermaceae), a potential source of acetylcholinesterase inhibitors. Journal of Pharmacy and Pharmacology, 61(1), 103–107. doi: 10.1211/jpp/61.01.0014
Muthaura, C. N., Rukunga, G. M., Chhabra, S. C., Omar, S. A., Guantai, A. N., Gathirwa, J. W., Tolo, F. M., Mwitari, P. G., Keter, L. K., Kirira, P. G., Kimani, C. W., Mungai, G. M., & Njagi, E. N. M. (2007). Antimalarial activity of some plants traditionally used in treatment of malaria in Kwale district of Kenya. Journal of Ethnopharmacology, 112(3), 545–551. doi: 10.1016/j.jep.2007.04.018
Nagendrappa, P. B., Naik, M. P., & Payyappallimana, U. (2013). Ethnobotanical survey of malaria prophylactic remedies in Odisha, India. Journal of Ethnopharmacology, 146(3), 768–772. doi: 10.1016/j.jep.2013.02.003
Naghibi, F., Esmaeili, S., Abdullah, N. R., Nateghpour, M., Taghvai, M., Kamkar, S., & Mosaddegh, M. (2013). In Vitro and In Vivo Antimalarial Evaluations of Myrtle Extract, a Plant Traditionally Used for Treatment of Parasitic Disorders. BioMed Research International, 2013, 1–5. doi: 10.1155/2013/316185
Ndamba, J., Lemmich, E., & Mølgaard, P. (1993). Investigation of the diurnal, ontogenetic and seasonal variation in the molluscicidal saponin content of Phytolacca dodecandra aqueous berry extracts. Phytochemistry, 35(1), 95–99. doi: 10.1016/S0031-9422(00)90515-6
Nguta, J. M., Mbaria, J. M., Gakuya, D. W., Gathumbi, P. K., & Kiama, S. G. (2010). Antimalarial herbal remedies of Msambweni, Kenya. Journal of Ethnopharmacology, 128(2), 424–432. doi: 10.1016/j.jep.2010.01.033
Nyandwaro, K., Oyweri, J., Kimani, F., & Mbugua, A. (2020). Evaluating Antiplasmodial and Antimalarial Activities of Soybean ( Glycine max ) Seed Extracts on P. falciparum Parasite Cultures and P. berghei -Infected Mice. Journal of Pathogens, 2020, 1–8. doi: 10.1155/2020/7605730
Obbo, C. J. D., Kariuki, S. T., Gathirwa, J. W., Olaho-Mukani, W., Cheplogoi, P. K., & Mwangi, E. M. (2019). In vitro antiplasmodial, antitrypanosomal and antileishmanial activities of selected medicinal plants from Ugandan flora: Refocusing into multi-component potentials. Journal of Ethnopharmacology, 229, 127–136. doi: 10.1016/j.jep.2018.09.029
Ofulla, A. V. O., Chege, G. M. M., Rukunga, G. M., Karie, F. K., Gitthure, J. I., & Kofi-Tsekpo, M. W. (1995). In vitro antimalarial activity of extracts of Albizia gummifera, Aspilia mossambicensis, Melia azedarach and Azadirachta indica against Plasmodium falciparum. African Journal of Health Sciences, 2(2), 309–311.
OPAS. (2020). Organization Pan Americana da Saúde - Malária, 2020.
Orhan, I. E., Ozturk, N., & Sener, B. (2015). Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species. Asian Pacific Journal of Tropical Medicine, 8(4), 283–286. doi: 10.1016/S1995-7645(14)60331-X
Orulla, A. V, Rukunga, G. M., Chege, G. M., Kiarie, F., Muthaura, C. N., Githure, J. I., & Kofi-Tsekpo, W. M. (1996). Antimalarial activity of fractions isolated from Albizia gummifera and Aspilia mossambicensis crude extracts. African Journal of Health Sciences, 3(2), 44–46.
Orwa, J. A., Ngeny, L., Mwikwabe, N. M., Ondicho, J., & Jondiko, I. J. O. (2013). Antimalarial and safety evaluation of extracts from Toddalia asiatica (L) Lam. (Rutaceae). Journal of Ethnopharmacology, 145(2), 587–590. doi: 10.1016/j.jep.2012.11.034
Osorio, E., Arango, G. J., Jiménez, N., Alzate, F., Ruiz, G., Gutiérrez, D., Paco, M. A., Giménez, A., & Robledo, S. (2007). Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. Journal of Ethnopharmacology, 111(3), 630–635. doi: 10.1016/j.jep.2007.01.015
Owuor, B. O., Ochanda, J. O., Kokwaro, J. O., Cheruiyot, A. C., Yeda, R. ., Okudo, C. A., & Akala, H. M. (2012). In vitro antiplasmodial activity of selected Luo and Kuria medicinal plants. Journal of Ethnopharmacology, 144(3), 779–781. doi: 10.1016/j.jep.2012.09.045
Pitarević, I., Kuftinec, J., Blažević, N., & Kuštrak, D. (1984). Seasonal Variation of Essential Oil Yield and Composition of Dalmatian Sage, Salvia officinalis. Journal of Natural Products, 47(3), 409–412. doi: 10.1021/np50033a002
Ponzi, E. A. C., Oliveira, T. L. de, Morais, I. A. F. de, Silva Júnior, J. J. da, Gerbi, M. M., Souza, I. A. de, Psiottano, M. N. C., & Xavier, H. S. (2010). Atividade antimicrobiana do extrato de Momordica charantia L. Revista de Cirurgia e Traumatologia Buco-maxilo-facial, 10(1), 89–94.
Roca-Pérez, L., Boluda, R., Gavidia, I., & Pérez-Bermúdez, P. (2004). Seasonal cardenolide production and Dop5βr gene expression in natural populations of Digitalis obscura. Phytochemistry, 65(13), 1869–1878. doi: 10.1016/j.phytochem.2004.05.004
Rukunga, G. M., Muregi, F. W., Tolo, F. M., Omar, S. A., Mwitari, P., Muthaura, C. N., Omlin, F., Lwande, W., Hassanali, A., Githure, J., Iraqi, F. W., Mungai, G. M., Kraus, W., & Kofi-Tsekpo, W. M. (2007). The antiplasmodial activity of spermine alkaloids isolated from Albizia gummifera. Fitoterapia, 78(7–8), 455–459. doi: 10.1016/j.fitote.2007.02.012
Sabbatani, S., Manfredi, R., & Fiorino, S. (2010). Malaria infection and the anthropological evolution. Saúde e Sociedade, 19(1), 64–83. doi: 10.1590/S0104-12902010000100006
Salminen, J.-P., Ossipov, V., Haukioja, E., & Pihlaja, K. (2001). Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens. Phytochemistry, 57(1), 15–22. doi: 10.1016/S0031-9422(00)00502-1
Santos, B. M., Dias, B. K. M., Nakabashi, M., & Garcia, C. R. S. (2021). The Knockout for G Protein-Coupled Receptor-Like PfSR25 Increases the Susceptibility of Malaria Parasites to the Antimalarials Lumefantrine and Piperaquine but Not to Medicine for Malaria Venture Compounds. Frontiers in Microbiology, 12. doi: 10.3389/fmicb.2021.638869
Schmidt, T., Bomme, U., & Alfermann, A. (1998). Sesquiterpene Lactone Content in Leaves of in vitro and Field Cultivated Arnica montana *. Planta Medica, 64(03), 268–270. doi: 10.1055/s-2006-957423
Schwob, I., Bessiere, J, M., Masotti, V., & Viano, J. (2013). Changes in essential oil composition in Saint John’s wort (Hypericum perforatum L.) aerial parts during its phenological cycle. Biochemical systematics and ecology, 32(8), 735–745.
Sherrard-Smith, E., Hogan, A. B., Hamlet, A., Watson, O. J., Whittaker, C., Winskill, P., Ali, F., Mohammad, A. B., Uhomoibhi, P., Maikore, I., Ogbulafor, N., Nikau, J., Kont, M. D., Challenger, J. D., Verity, R., Lambert, B., Cairns, M., Rao, B., Baguelin, M., … Churcher, T. S. (2020). The potential public health consequences of COVID-19 on malaria in Africa. Nature Medicine, 26(9), 1411–1416. doi: 10.1038/s41591-020-1025-y
Singh, S. V., Manhas, A., Kumar, Y., Mishra, S., Shanker, K., Khan, F., Srivastava, K., & Pal, A. (2017). Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action. Biomedicine and Pharmacotherapy, 89, 761–771. doi: 10.1016/j.biopha.2017.02.056
Southwell, I. A., & Bourke, C. A. (2001). Seasonal variation in hypericin content of Hypericum perforatum L. (St. John’s Wort). Phytochemistry, 56(5), 437–441. doi: 10.1016/S0031-9422(00)00411-8
Tabuti, J. R. S. (2008). Herbal medicines used in the treatment of malaria in Budiope county, Uganda. Journal of Ethnopharmacology, 116(1), 33–42. doi: 10.1016/j.jep.2007.10.036
Taek, M. M., Banilodu, L., Neonbasu, G., Watu, Y. V., E.W., B. P., & Agil, M. (2019). Ethnomedicine of Tetun ethnic people in West Timor Indonesia: philosophy and practice in the treatment of malaria. Integrative Medicine Research, 8(3), 139–144. doi: 10.1016/j.imr.2019.05.005
Tajbakhsh, E., Kwenti, T. E., Kheyri, P., Nezaratizade, S., Lindsay, D. S., & Khamesipour, F. (2021). Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: a systematic review of literature. Malaria Journal, 20(1), 349. doi: 10.1186/s12936-021-03866-0
Tomchinsky, B., Ming, L. C., Kinupp, V. F., Hidalgo, A. de F., & Chaves, F. C. M. (2017). Ethnobotanical study of antimalarial plants in the middle region of the Negro River, Amazonas, Brazil. Acta Amazonica, 47(3), 203–212. doi: 10.1590/1809-4392201701191
Traoré, M., Diallo, A., Nikièma, J. B., Tinto, H., Dakuyo, P., Ouédraogo, J. B., Guissou, I. P., & Guiguemdé, T. R. (2008). Inhibition of cholinesterase and amyloid-&bgr; aggregation by resveratrol oligomers from Vitis amurensis. Phytotherapy Research, 22(4), 544–549. doi: 10.1002/ptr
Tsabang, N., Fokou, P. V. T., Tchokouaha, L. R. Y., Noguem, B., Bakarnga-Via, I., Nguepi, M. S. D., Nkongmeneck, B. A., & Boyom, F. F. (2012). Ethnopharmacological survey of Annonaceae medicinal plants used to treat malaria in four areas of Cameroon. Journal of Ethnopharmacology, 139(1), 171–180. doi: 10.1016/j.jep.2011.10.035
Tse, E. G., Korsik, M., & Todd, M. H. (2019). The past, present and future of anti-malarial medicines. Malaria Journal, 18(1), 93. doi: 10.1186/s12936-019-2724-z
Tu, Y. (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine, 17(10), 1217–1220. doi: 10.1038/nm.2471
van der Pluijm, R. W., Amaratunga, C., Dhorda, M., & Dondorp, A. M. (2021). Triple Artemisinin-Based Combination Therapies for Malaria – A New Paradigm? Trends in Parasitology, 37(1), 15–24. doi: 10.1016/j.pt.2020.09.011
Vargas-Sinisterra, A. F., Pabon-Vidal, Adriana;, Rios-Orrego, Alexandra; Ramirez, G., & Lópes-Barrios, E. P. (2018). Evaluacion in vitro de la actividad Antiplasmodia y citotoxica de plantas del sur pacifico Colombiano (Tumaco, Nariño). Biotecnología en el Sector Agropecuario y Agroindustrial Métricas, 16(2), 79–87. doi: https://doi.org/10.18684/bsaa.16n2.1168
Waako, P. J., Gumede, B., Smith, P., & Folb, P. I. (2005). The in vitro and in vivo antimalarial activity of Cardiospermum halicacabum L. and Momordica foetida Schumch. Et Thonn. Journal of Ethnopharmacology, 99(1), 137–143. doi: 10.1016/j.jep.2005.02.017
Waffo, K. A. F., Coombes, P. H., Crouch, N. R., Mulholland, D. A., El Amin, S. M. M., & Smith, P. J. (2007). Acridone and furoquinoline alkaloids from Teclea gerrardii (Rutaceae: Toddalioideae) of southern Africa. Phytochemistry, 68(5), 663–667. doi: 10.1016/j.phytochem.2006.10.011
Wallaart, T. E., Pras, N., Beekman, and, A. C., & Quax, W. J. (2000). Seasonal Variation of Artemisinin and its Biosynthetic Precursors in Plants of Artemisia annua of Different Geographical Origin: Proof for the Existence of Chemotypes. Planta Medica, 66(1), 57–62. doi: 10.1055/s-2000-11115
WATERMAN, P. G., & MOLE, S. (1989). In Insect-plant interactions (B. Raton (org.); 1o ed). 4.
World Health Organization – WHO. (2021). World malaria report. Recuperado de https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
Yetein, M. H., Houessou, L. G., Lougbégnon, T. O., Teka, O., & Tente, B. (2013). Ethnobotanical study of medicinal plants used for the treatment of malaria in plateau of Allada, Benin (West Africa). Journal of Ethnopharmacology, 146(1), 154–163. doi: 10.1016/j.jep.2012.12.022
Zidorn, C., & Stuppner, H. (2001). Evaluation of chemosystematic characters in the genus Leontodon ( Asteraceae ). TAXON, 50(1), 115–133. doi: 10.2307/1224515
Zobayed, S. M. A., Afreen, F., & Kozai, T. (2005). Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiology and Biochemistry, 43(10–11), 977–984. doi: 10.1016/j.plaphy.2005.07.013
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Leandro do Nascimento Martinez; Nairo Brilhante da Silva; Minelly Azevedo da Silva; Saara Neri Fialho; Joana D'Arc Neves Costa
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.