Uso de liposomas en el diagnóstico y tratamiento del cáncer de piel no melanoma: una revisión integrativa
DOI:
https://doi.org/10.33448/rsd-v11i10.32984Palabras clave:
Carcinoma basocelular; Carcinoma de células escamosas; Nanotecnología.Resumen
El cáncer de piel no melanoma (CPNM) es el tipo de cáncer con mayor incidencia y se ha clasificado en: carcinoma de células basales (CCB) y carcinoma de células escamosas (CCE). El objetivo del presente estudio fue evaluar, a través de una revisión integrativa de la literatura, el uso de liposomas en el diagnóstico y tratamiento del CPNM. La estrategia de búsqueda de artículos científicos se realizó a través de una investigación en las bases de datos Scopus, Pubmed y Web Of Science, accediendo a través del Portal de Revistas de la Capes, utilizando los descriptores en inglés "Liposomes" AND "non-melanoma" AND "skin" AND “cancer” AND “(treatment OR diagnosis)”. Para auxiliar el proceso de análisis de los artículos se utilizó la plataforma Rayyan. Después del análisis, se seleccionaron 7 publicaciones para componer esta revisión, identificando: títulos, autores, objetivos, principales resultados, conclusiones y temas abordados en los estudios. Se observó que la mayoría de los ejes temáticos abordaron el uso de sistemas liposomales para la potenciación de fármacos con capacidad antitumoral. Los demás artículos discutieron el uso en la detección y diagnóstico de lesiones asociadas al Cáncer de Piel No Melanoma y también la aplicación de nanoportadores en terapias anticancerígenas, especialmente en terapia fotodinámica. Con base en esto, se concluyó que los liposomas tienen una aplicación versátil en NMSC, que va desde el tratamiento hasta el diagnóstico, sin embargo, la investigación sobre la aplicación enfocada en este tema es escasa y reciente. Por lo tanto, esta revisión es sumamente relevante para que podamos encaminar la elaboración de nuevos estudios que tengan como objetivo mejorar las técnicas antes mencionadas y desarrollar nuevas investigaciones sobre el tema.
Citas
Apalla, Z. et al. (2017) Epidemiological trends in skin cancer. Dermatology practical & conceptual, 7(2), 1.
Bäumler, W., Abels, C., & Szeimies, R. M. (2003). Fluorescence diagnosis and photodynamic therapy in dermatology. Medical Laser Application, 18(1), p. 47-56.
Chen, W., Goldys, E. M., & Deng, W. (2020). Light-induced liposomes for cancer therapeutics. Progress in lipid research, 79, p. 101052.
Christiansen, K., Bjerring, P., & Troilius, A. (2007). 5‐ALA for photodynamic photorejuvenation—optimization of treatment regime based on normal‐skin fluorescence measurements. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 39(4). 302-310.
Cives, M. et al. (2020). Non-melanoma skin cancers: Biological and clinical features. International Journal of Molecular Sciences, 21(15), 5394.
Ciążyńska, M. et al. (2021). The incidence and clinical analysis of non-melanoma skin cancer. Scientific reports, 11(1), 1-10.
Cosco, D. et al. (2015). Ultradeformable liposomes as multidrug carrier of resveratrol and 5-fluorouracil for their topical delivery. International journal of pharmaceutics, 489(1-2), 1-10.
De Leeuw, J. et al. (2009) Fluorescence detection and diagnosis of non‐melanoma skin cancer at an early stage. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 41(2), 96-103.
Fakayode, O. J. et al. (2018) Applications of functionalized nanomaterials in photodynamic therapy. Biophysical Reviews, 10(1), 49-67.
Fang, Y. P. et al. (2008). Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. International Journal of Pharmaceutics, 356(1-2), 144-152.
Ferrari, G. et al. (2022). Effective Penetration of a Liposomal Formulation of Bleomycin through Ex-Vivo Skin Explants from Two Different Species. Cancers, 14(4), 1083.
Fogel, A. L., Sarin, K. Y., & Teng, J. (2017). Genetic diseases associated with an increased risk of skin cancer development in childhood. Current Opinion in Pediatrics, 29(4), 426-433.
Frézard, F. et al. (2005). Lipossomas: propriedades físico-químicas e farmacológicas, aplicações na quimioterapia à base de antimônio. Química Nova, 28, 511-518.
Hampras, S. S. et al. (2018). Prevalência de infecções virais cutâneas em carcinoma epidermóide cutâneo incidente detectado em pacientes com leucemia linfocítica crônica e transplante de células-tronco hematopoéticas. Leucemia & linfoma, 59(4), 911-917.
Hiesse, C. et al. (1997). Malignancy after renal transplantation: analysis of incidence and risk factors in 1700 patients followed during a 25-year period. In: Transplantation proceedings. Elsevier. p. 831-833.
INCA. Instituto Nacional de Câncer. (2022). Câncer de pele não melanoma. https://www.inca.gov.br/tipos-de-cancer/cancer-de-pele-nao-melanoma.
Johansson, A. et al. (2007). Fluorescence and absorption assessment of a lipid mTHPC formulation following topical application in a non-melanotic skin tumor model. Journal of biomedical optics, 12(3), 034026.
Karagas, M. R. et al. (2007). Squamous cell and basal cell carcinoma of the skin in relation to radiation therapy and potential modification of risk by sun exposure. Epidemiology, p. 776-784.
Leiter, U.; Eigentler, T. & Garbe, C. (2014). Epidemiology of skin cancer. Sunlight, vitamin D and skin cancer, p. 120-140.
Lucas, R. et al. (2006). Solar ultraviolet radiation: global burden of disease from solar ultraviolet radiation. World Health Organization.
Martinez, J. C. & Otley, C. C. (2001). The management of melanoma and nonmelanoma skin cancer: a review for the primary care physician. In: Mayo Clinic Proceedings. Elsevier, p. 1253-1265.
Meirelles, I. O. et al. (2020). Terapia Fotodinâmica para lesões de pele não melanoma. Ministério da Saúde.
Mendes, K. D. S.; Silveira, R. C. C. P. & Galvão, C. M (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto contexto - enferm, 17(4).
Miranda, K. W. R. et al. (2020). Aplicações de Nanocarreadores Baseados em Células Animais na Terapia Fotodinâmica em Oncologia. Revista Internacional de Ciências, 10(2), 43-54.
Moan, J., Ma, L. W., & Iani, V. (2001). On the pharmacokinetics of topically applied 5‐aminolevulinic acid and two of its esters. International journal of cancer, 92(1), 139-143.
Nikolaou, V., Stratigos, A. J., & Tsao, H. (2012). Hereditary nonmelanoma skin cancer. In: Seminars in cutaneous medicine and surgery. NIH Public Access. p. 204.
Olson, A. L. et al. (2008). The impact of an appearance-based educational intervention on adolescent intention to use sunscreen. Health education research, 23(5), 763-769.
Paolino, D. et al. (2008). Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. International journal of Pharmaceutics, 353(1-2), 233-242.
Patel, A. S. et al. (2008). Exposure profiles and human papillomavirus infection in skin cancer: an analysis of 25 genus β-types in a population-based study. Journal of investigative dermatology, 128(12), 2888-2893.
Penn, I. (2000). Post-transplant malignancy: the role of immunosuppression. Drug safety, 23, 101-113.
Samarasinghe, V. & Madan, Vl. (2012). Nonmelanoma skin cancer. Journal of cutaneous and aesthetic surgery, 5(1), 3.
Souto, E. B. et al. (2022). Non-melanoma skin cancers: physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. Neoplasia, 30, 100810.
Svaasand, L. O. et al. (1996). Dosimetry model for photodynamic therapy with topically administered photosensitizers. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 18(2), 139-149.
Thomas, S. M. et al. (2021). Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer. Medical Image Analysis, 68, 101915.
Ulrich, M. et al (2007). Noninvasive diagnostic tools for nonmelanoma skin cancer. British Journal of Dermatology, 157, 56-58.
Umar, A. K. et al (2022). Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon, p. e08934.
Van Der Beek, N. et al. (2012). PpIX fluorescence combined with auto‐fluorescence is more accurate than PpIX fluorescence alone in fluorescence detection of non‐melanoma skin cancer: an intra‐patient direct comparison study. Lasers in Surgery and Medicine, 44(4), 271-276.
Weinstock, M. A. et al (2007). Melanoma early detection with thorough skin self-examination: the “Check It Out” randomized trial. American journal of preventive medicine, 32(6), 517-524.
Woźniak, M. et al (2021). The comparison of in vitro photosensitizing efficacy of curcumin-loaded liposomes following photodynamic therapy on melanoma MUG-Mel2, squamous cell carcinoma SCC-25, and normal keratinocyte HaCaT cells. Pharmaceuticals, 14(4), 374.
Xia, H. et al (2015). Retinoic acid liposome-hydrogel: preparation, penetration through mouse skin and induction of F9 mouse teratocarcinoma stem cells differentiation. Brazilian Journal of Pharmaceutical Sciences, 51, 541-549.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Ana Victória da Silva Mendes ; Andressa Amorim dos Santos; Clailson da Silva Pinheiro; Talissa Brenda de Castro Lopes; Maritânia dos Santos Nogueira; Hercilia Maria Lins Rolim
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.