Influencia del recubrimiento híbrido en la resistencia a la corrosión del titanio

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i11.33945

Palabras clave:

Titanio; Anodizado; Precursores de alcóxido de silano.

Resumen

Los biomateriales, luego de implantados, quedan en contacto con el fluido corporal, lo que contribuye a la corrosión de los materiales, comprometiendo su integridad en algunos tipos de biomateriales. Este trabajo tiene como objetivo estudiar la resistencia a la corrosión del titanio cuando se somete a fluido corporal simulado (SBF). Las muestras de titanio cp de grado 2 se anodizaron con 1 M H3PO4 y 1 M H3PO4 + 0,15 % HF p/v electrolito a 10 V durante 30 minutos. Los recubrimientos híbridos están compuestos por precursores de alcóxido de metacriloxipropiltrimetoxisilano (MPTS) y tetraetoxisilano (TEOS). Las muestras no anodizadas y anodizadas se recubrieron con el recubrimiento híbrido. El revestimiento se analizó usando espectroscopía infrarroja por transformada de Fourier (FTIR) y análisis de termogravimetría (TGA). Las muestras fueron analizadas con Microscopía Electrónica de Barrido (SEM), ángulo de contacto, polarización potenciodinámica, Potencial de Circuito Abierto (OCP) y Espectroscopía de Impedancia Electroquímica (EIE). Los resultados mostraron que la deposición del recubrimiento híbrido sobre las muestras anodizadas no fue efectiva como se esperaba, ya que la película depositada presentó irregularidades, indicando un mejor comportamiento corrosivo de las muestras únicamente anodizadas.

Citas

Akhtar, S., Matin, A., Kumar, A.M., Ibrahim, A., Laoui, T. (2018). Enhancement of anticorrosion property of 304 stainless steel using silane coatings. Applied Surface Science, 440, p. 1286-1297.

Albuquerque, A.R., Santos, I.M.G., Sambrano, J.R. (2014). Structural and electronic properties of anatase TiO2 thin films: periodic b3lyp-d* calculations in 2d systems. Química Nova, 37(8), p. 1318-1323.

Almeida, L.L., Ferreira, D.W.F.S., Santana, J.A., Huck-Iriart, C., Kunst, S.R., Ferreira, J.Z., Oliveira, C.T., Sarmento, V.H.V. (2020). Effect of the addition of calcium salts on the structure and anticorrosion properties of siloxane-poly(hydroxyethyl methacrylate) hybrid coating applied on Ti-6Al-4V alloy. Journal Of Sol-Gel Science And Technology, 96, p. 690–701.

Assis, S. L. (2006). Investigação da resistência à corrosão da liga Ti-13Nb-13Zr por meio de técnicas eletroquímicas e de análise de superfície. Tese (Doutorado) – Curso de Tecnologia Nuclear, Universidade de São Paulo, São Paulo, 199 f.

ASTM B265-20a (2020). Standard Specification for Titanium and Titanium Alloy Strip. American Society for Testing and Materials. West Conshohocken: Astm International, 12 p.

Baldin, E.K.K., Beltrami, L.V.R., Kunst, S.R., Vega, M.R.O., Scienza, L.C., Malfatti, C.F. (2014). Anticorrosive performance of commercial nanoceramic coatings on AISI 1010 steel. Materials Research (São Carlos. Impresso), 17, p. 1497-1506.

Ballarre, J., Jimenez-Pique, E., Anglada, M., Pellice, S.A., Cavalieri, A.L. (2009). Mechanical characterization of nano-reinforced silica based sol–gel hybrid coatings on AISI 316L stainless steel using nanoindentation techniques. Surface and Coatings Technology, 203(20-21), p. 3325-3331.

Barranco, V., Escudero, M.L., García-Alonso, M.C. (2011). Influence of the microstructure and topography on the barrier properties of oxide scales generated on blasted Ti6Al4V surfaces. Acta Biomaterialia, 7(6), p. 2716-2725.

Beltrami, L.V.R., Kunst, S.R., Birriel, E.J., Malfatti, C.F. (2017). Magnetoelastic biosensors: corrosion protection of an FeNiMoB alloy from alkoxide precursors. Thin Solid Films, 624, p. 83-94.

Bossardi, K. (2008). Nanotecnologia aplicada a tratamento superficiais para o aço carbono 1020 como alternativa ao fosfato de zinco. Dissertação (Mestrado) - Curso de Engenharia de Materiais e Metalúrgica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 87 f.

Braem, A., Neirinck, B., Schrooten, J., Biest, O.V., Vleugels, J. (2012). Biofunctionalization of porous titanium coatings through sol–gel impregnation with a bioactive glass–ceramic. Materials Science and Engineering: C, 32(8), p. 2292-2298.

Brasil, R.B. (2018). Ministério da Saúde lança licitação para registro de preços de órteses e próteses. Ministério da Saúde. Disponível em: https://portalarquivos2.saude.gov.br/images/pdf/2018/fevereiro/01/Coletiva-Ortese-e-Protese.pdf. Acesso em: 03 mar. 2020.

Brinker, C., Scherer, J., George W. (1990). Sol-Gel Science: the physics and chemistry of sol⠳gel processing. Academic Press, 912 p.

Brooks, E.K., Brooks, R.P., Ehrensberger, M.T. (2017). Effects of simulated inflammation on the corrosion of 316L stainless steel. Materials Science and Engineering: C, 71, p. 200-205.

Cândido, L.C., Sathler, L., Gomes, J.A.C.P. (2002). Algumas considerações sobre a corrosão do Ti e Ti-6Al-4V em presença de íons fluoreto. Congresso brasileiro de corrosão. Salvador, Bahia.: https://docplayer.com.br/8777226-Algumas-consideracoes-sobre-a-corrosao-do-ti-e-ti-6al-4v-em-presenca-de-ions-fluoreto.

Cao, Z., Kong, G., Wang, C.C.Y. (2017). Influence of Nd addition on the corrosion behavior of Zn-5%Al alloy in 3.5wt.% NaCl solution. Applied Surface Science, 426, p. 67-76.

Catauro, M., Bollino, F., Papale, F., Giovanardi, R., Veronesi, P. (2014). Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants. Materials Science and Engineering: C, 43, p. 375-382.

Certhoux, E., Ansart, F., Turq, V., Bonino, J.P., Sobrino, J.M., Garcia, J., Reby, J. (2013). New sol–gel formulations to increase the barrier effect of a protective coating against the corrosion of steels. Progress in Organic Coatings, 76 (1), p. 165-172.

Chen, Q., Thouas, G.A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R, 87, p.1-57.

Chou, T.P., Chandrasekaran, C., Cao, G.Z. (2003). Sol-Gel-Derived Hybrid Coatings for Corrosion Protection. Journal of Sol-Gel Science and Technology, 26(1/3), p. 321-327.

Dalmau, A., Pina, V.G., Devesa, F., Amigó, V., Muñoz, A.I. (2013). Influence of fabrication process on electrochemical and surface properties of Ti–6Al–4V alloy for medical applications. Electrochimica Acta, 95, p. 102-111.

Diener, A., Nebe, B., Lüthen, F., Becker, P., Beck, U., Neumann, H.G., Rychly, J. (2005). Control of focal adhesion dynamics by material surface characteristics. Biomaterials, 26(4), p.383-392.

Eaton, P., Holmes, P., yarwood, J. (2001). In situ andex situ FTIR-ATR and Raman microscopic studies of organosilane hydrolysis and the effect of hydrolysis on silane diffusion through a polymeric film. Journal of Applied Polymer Science, 82(8), p. 2016-2026.

Ferreira, J.M., Oliveira, M., Trindade, G.F., Santos, L.C.L., Tomachuk, C.R., Baker, M.A. (2018). Development and characterisation of zinc oxalate conversion coatings on zinc. Corrosion Science, 137, p. 13-32.

Flis, J., Kanoza, M. (2006). Electrochemical and surface analytical study of vinyl-triethoxy silane films on iron after exposure to air. Electrochimica Acta, 51(11), p. 2338-2345.

Francisco, J. S. (2013). Avaliação do Pré Tratamento a base de sulfossiloxano sobre aço galvannealed combinado com tintas anticorrosivas. Dissertação (Mestrado) - Curso de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, 106 f.

Franquet, A., Terryn, H., Vereecken, J. (2003). IRSE study on effect of thermal curing on the chemistry and thickness of organosilane films coated on aluminium. Applied Surface Science, 211(1-4), p. 259-269.

Fuhr, L.T., Moura, A.B.D., Carone, C.L.P., Morisso, F.D.P., Scheffel, L.F., Kunst, S.R., Ferreira, J.Z., Oliveira, C.T. (2020). Colored anodizing of titanium with pyroligneous solutions of black wattle. Matéria (Rio de Janeiro), 25(2), p. 12658.

Gabbardo, A.D.A. (2014). Influência do pH do envelhecimento da solução precursora na deposição do revestimento a base de silano BTSE com adição de inibidor Ce(III) e estudo do envelhecimento desse revestimento aplicado sobre aço galvanizado. Dissertação de Mestrado - Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, 98 f.

Gama, R.O. (2014). Controle do comportamento hidrofílico/hidrofóbico de polímeros naturais biodegradáveis através da decoração de superfícies com nano e microcomponentes. Tese (Doutorado) - Curso de Engenharia Metalúrgica, Materiais e de Minas, Universidade Federal de Minas Gerais, Belo Horizonte, 110 f.

Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), p.397-425.

Gentil, V. (2017). Corrosão. 6. ed. Rio de Janeiro: Ltc, 2017. 392 p. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/978-85-216-1944-4/cfi/38!/4/2@100:0.00. Acesso em: 20 out. 2020.

Graef, T., Kunst, S.R., Mueller, L.T., Morisso, F.D.P., Carone, C.L.P., Fuhr, L.T., Oliveira, C.T., Ferreira, J.Z. (2020). Superficial treatment by anodization in order to obtain titanium oxide nanotubes applicable in implantology. Materia-Rio de Janeiro, 25, p. e12873.

Graeve, I., Vereecken, j., Franquet, A., Schaftinghen, T.V., Terryn, H. (2007). Silane coating of metal substrates: complementary use of electrochemical, optical and thermal analysis for the evaluation of film properties. Progress in Organic Coatings, 59(3), p. 224-229.

International Osteoporosis Foundation (Switzerland). (2012). Brasil. Disponível em: https://www.iofbonehealth.org/sites/default/files/media/PDFs/Regional%20Audits/2012-Latin_America_Audit-Brazil-PT_0_0_0.pdf.

Acesso em: 03 mar. 2020.

Kania, A., Nolbrzak, P., Radoń, A., Niemiec-Cyganek, A., Babilas, R. (2020). Effect of the Thickness of TiO2 Films on the Structure and Corrosion Behavior of Mg-Based Alloys. Materials, 13(5), p. 1065-1080.

Kasemo, B., Lausmaa, J. (1985). Aspects of surface physics on titanium implants. Swedish Dental Journal Supplement, 28, p. 19-36.

Kaur, M., Singh, K. (2019). Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C, 102, p. 844-862.

Kokubo, T., Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), p. 2907-2915.

Kowalski, D., Kim, D., Schmuki, P. (2013). TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications. Nano Today, 8(3), p. 235-264.

Kunst, S.R., Cardoso, H.R.P., Oliveira, C.T., Santana, J.A., Sarmento, V.H.V., Muller, I.L., Malfatti, C.F. (2014). Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: influence of tetraethoxysilane addition. Applied Surface Science, 298, p. 1-11.

Kunst, S.R., Cardoso, H.R.P., Beltrami, L.V.R., Oliveira, C.T., Menezes, T.L., Ferreira, J.Z., Malfatti, C.F. (2015). New sol-gel formulations to increase the barrier effect of a protective coating against the corrosion and wear of galvanized Steel. Materials Research, 18(1), p. 138-150.

Kunst, S.R., Cerveira, D.O., Ferreira, J.Z., Graef, T.F., Santana, J.A., Carone, C.L.P., Morisso, F.D.P., Oliveira, C.T. (2021). Influence of simulated body fluid (normal and inflammatory) on corrosion resistance of anodized titanium. Research, society and development, 10, p. e122101018606.

Leach, J.S.L., Pearson, B.R. (1988). Crystallization in anodic oxide films. Corrosion Science, 28(1), p. 43-56.

Liu, Z., Liu, H., Zhong, X., Hashimoto, T., Thompson, G.E., Skeldon, P. (2014). Characterization of anodic oxide growth on commercially pure titanium in NaTESi electrolyte. Surface and Coatings Technology, 258, p. 1025-1031.

Lorenzetti, M., Pellicer, E., Sort, J., Baró, M.D., Kovač, J., Novak, S., Kobe, S. (2014). Improvement to the corrosion resistance of ti-based implants using hydrothermally synthesized nanostructured anatase coatings. Materials, 7(1), p. 180-194.

Manivasagam, G., Dhinasekaran, D., Rajamanickam, A. (2010). Biomedical Implants: Corrosion and its Prevention: a review. Recent Patents on Corrosion Science, 2, p.40-54.

Marino, C.E.B., Mascaro, L.H. (2011). Electrochemical Tests to Evaluate the Stability of the Anodic Films on Dental Implants. International Journal of Electrochemistry, 2011, p. 1-7.

Mohammadloo, H.E., Sarabi, A.A., Alvani, A.A.S., Sameie, H., Salimi, R. (2012). Nano-ceramic hexafluorozirconic acid based conversion thin film: surface characterization and electrochemical study. Surface and Coatings Technology, 206(19-20), p. 4132-4139.

Mohseni, M., Bastani, S., Jannesari, A. (2014). Influence of silane structure on curing behavior and surface properties of sol–gel based UV-curable organic–inorganic hybrid coatings. Progress in Organic Coatings, 77(7), p. 1191-1199.

Oliveira, E.I. (2012). Avaliação do desempenho de revestimentos híbridos modificados com inibidores no combate à corrosão de ligas de alumínio. Dissertação (Mestrado) - Curso de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, 192 f.

Oréfice, R.L., Pereira, M.M., Mansur, H.S. (2012). Biomateriais: fundamentos e aplicações. 1ªed., Rio de Janeiro: Guanabara Koogan, 552p.

Plueddemann E.P. (1982). Aqueous Solutions of silane coupling agents. Silane Coupling Agents. Springer, Boston, MA. p. 49–73.

Pires, A.L.R., Bierhalz, A.C.K., Moraes, A.M. (2015). Biomaterials: types, applications, and market. Química Nova, 38(7), p.957-971.

Premkumar, P.K., Duraipandy, N., Kiran, M.S., Rajendran, N. (2018). Antibacterial effects, biocompatibility and electrochemical behavior of zinc incorporated niobium oxide coating on 316L SS for biomedical applications. Applied Surface Science, 427, p. 1166-1181.

Ramires, I., Guastaldi, A. C. (2002). Estudo do biomaterial Ti-6Al-4V empregando-se técnicas eletroquímicas e XPS. Química Nova, 25(1), p. 10-14.

Ribeiro, D.V., Souza, C.A.C., Abrantes, J.C.C. (2015). Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista Ibracon de Estruturas e Materiais, 8(4), p. 529-546.

Rodríguez-Cano, A., Cintas, P., Fernández-Calderón, M.C. et al. (2013). Controlled silanization–amination reactions on the Ti6Al4V surface for biomedical applications. Colloids and Surfaces B: Biointerfaces, 106, p. 248-257.

Sakai, R.T., Cruz, F.M.L., Melo, H.G., et al. (2012). Electrochemical study of TEOS, TEOS/MPTS, MPTS/MMA and TEOS/MPTS/MMA films on tin coated steel in 3.5% NaCl solution. Progress in Organic Coatings, 74(2), p. 288-301.

Salvador, D.G., Marcolin, P., Beltrami, L.V.R., Brandalise, R.N., Kunst, S.R. (2017). Influence of the pretreatment and curing of alkoxysilanes on the protection of the titanium-aluminum-vanadium alloy. Journal of Applied Polymer Science, 134(46), p. 45470.

Salvador, D.G., Marcolin, P., Beltrami, L.V.R., et al. (2018). Development of Alkoxide Precursors-Based Hybrid Coatings on Ti-6Al-4V Alloy for Biomedical Applications: Influence of pH of Sol. Journal of Materials Engineering and Performance, 27, p. 2863–2874.

Sharifnabi, A., Fathi, M.H., Yekta, B.E., Hossainalipour, M. (2014). The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant. Applied Surface Science, 288, p. 331-340.

Silva, M.A.M. (2014). Caracterização de superfícies de titânio modificado por oxidação à plasma. Tese (Doutorado) - Curso de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, 65 f.

Souza, J.C.M., Barbosa, S.L., Ariza, E.A., et al. (2015). How do titanium and Ti6Al4V corrode in fluoridated medium as found in the oral cavity? An in vitro study. Materials Science And Engineering: C, 47, p. 384-393.

Sul, Y.T., Johansson, C.B., Jeong, Y., Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics, 23(5), p. 329-346.

Tan, G., Zhou, L., Ning, C. et al. (2013). Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels. Applied Surface Science, 279, p.293-299.

Ooij, V.W.J., Zhu, D., Stacy, M. et al. (2005). Corrosion protection properties of organofunctional silanes — An overview. Tsinghua Science and Technology, 10(6), p. 639-664.

Verma, R.P. (2020). Titanium based biomaterial for bone implants: a mini review. Materials Today: Proceedings, 26, p. 3148-3151.

Vogler, E.A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1-3), p. 69-117.

Zhang, Q.H., Cossey, A., Tong, J. (2016). Stress shielding in bone of a bone-cement interface. Medical Engineering & Physics, 38(4), p. 423-426.

Zheng, S., Li, J. (2010). Inorganic–organic sol gel hybrid coatings for corrosion protection of metals. Journal of Sol-Gel Science and Technology, 54(2), p. 174-187.

Publicado

02/09/2022

Cómo citar

REISDOERFER, M. H. .; KUNST, S. R.; MORISSO, F. D. P. .; MACHADO, T. C. .; ZIULKOSKI, A. L. .; OLIVEIRA, C. T. . Influencia del recubrimiento híbrido en la resistencia a la corrosión del titanio . Research, Society and Development, [S. l.], v. 11, n. 11, p. e547111133945, 2022. DOI: 10.33448/rsd-v11i11.33945. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33945. Acesso em: 30 jun. 2024.

Número

Sección

Ingenierías