Predicción de vibraciones inducidas por voladuras de rocas com explosivos utilizando redes neuronales artificiales
DOI:
https://doi.org/10.33448/rsd-v11i11.34020Palabras clave:
Velocidad máxima de vibración de partículas; Vibraciones sísmicas; Voladura de rocas con explosivos; Redes neuronales artificiales; Ecuaciones empíricas.Resumen
En la industria minera, el parámetro más utilizado para la cuantificación y evaluación del daño potencial de las vibraciones sísmicas generadas por la voladura de rocas es la velocidad máxima de vibración de partículas (VPP). Se han tomado varias iniciativas con el objetivo de estimar los niveles de VPP. Los rápidos avances en la tecnología informática han convertido a los sistemas inteligentes en herramientas prometedoras para estimar resultados de las voladuras de rocas. En este contexto, este estudio tiene como objetivo evaluar las vibraciones inducidas por la voladura de rocas con explosivos en una mina en el Quadrilátero Ferrífero por medio de redes neuronales artificiales. La base de datos se dividió en muestras de entrenamiento (70%) y prueba (30%) de las redes. Considerando la importancia de seleccionar variables adecuadas para el entrenamiento de redes, se analizaron diferentes grupos de variables de entrada. La arquitectura que demostró mejor desempeño consideró la distancia entre el punto de monitoreo y detonación y la carga máxima por retardo como variables input. Para comparar el desempeño de la red neuronal con el desempeño de modelos empíricos y de regresión múltiple, se aplicó la misma base de datos. Finalmente, el modelo de red neuronal demostró ser superior a las ecuaciones empíricas y la regresión múltiple en términos de coeficiente de determinación (R²) y raíz del error cuadrático medio (RMSE) para los datos medidos y predichos. Además, se demostró la importancia de seleccionar las variables de entrada adecuadas para estimar el VPP por medio de redes neuronales.
Citas
Ainalis, D. et al. (2017). Modelling the source of blasting for the numerical Simulation of blast-induced ground vibrations: a review. Rock Mech Rock Eng, 50, 171-193.
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: Second international symposium on information theory, Budapest, 267–281.
Ambraseys, N.R., & Hendron, A.J. 1968. Dynamic behaviour of rock masses: rock mechanics in engineering practices. Wiley, London.
Armaghani, D. J., Momeni, E., Abad, S. V. A. N. K., & Khandelwal, M. (2015). Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ Earth Sci, 74:2845–2860.
Associação Brasileira de Normas Técnicas (ABNT). (2018). NBR 9653: Guia para avaliação dos efeitos provocados pelo uso de explosivos nas minerações em áreas urbanas – Procedimento. Rio de Janeiro.
Ataei, M., & Sereshki, F. (2017). Improved prediction of blast-induced vibrations in limestone mines using Genetic Algorithm. Journal of Mining & Environment, Vol.8, No.2, 291-304.
Bartlett, M. S. (1951). The effect of standardization on a chi square approximation in factor analysis. Biometrika, 38, 337–344.
Bayat, P., Monjezi, M. Rezakhah, M., & Armaghani, D. J. (2020). Artificial Neural Network and Firefly Algorithm for Estimation and Minimization of Ground Vibration Induced by Blasting in a Mine. Natural Resources Research, 29, 6: 4121-4132.
Box, G.E.P., & Cox, D.R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26, 2, 211-252.
Burger, S.V. 2018. Introduction to machine learning with R. O'Reilly Media, Sebastopol, USA.
Data Science Academy. (2021). O Neurônio, Biológico e Matemático. In: Deep Learning Book, https://www.deeplearningbook.com.br/o-neuronio-biologico-e-matematico/
Dehghani, H., & Beiromvand, H. (2019). Blasting pattern design for decreasing the ground vibration using genetic algorithm. Journal of Mineral Resources Engineering, 4, 2: 10 – 15.
Dinis da Gama, C., & Bernardo, P.A.M. (2001). Condições Técnicas para Uso de Explosivos na Escavação de Túneis Urbanos em Maciços Rochosos. Curso sobre Túneis em Meios Urbanos (organizado por SPG e FCT-UC) – Coimbra.
Duvall, W. I., & Petkof, B. 1959. Spherical propagation of explosion generated strain pulses in rock. USBM RI 5483.
Fávero, L. P., & Belfiore, P. (2017). Manual de análise de dados. 1. ed. Elsevier, Rio de Janeiro, Brasil.
Fritsch, S., & Günther, F. (2008). neuralnet: Training of Neural Networks. R Foundation for Statistical Computing, R package version 1.2.
Ghoraba, S., Monjezi, M., Talebi, N., Armaghani, D.J., & Moghaddam, M. (2016). Estimation of ground vibration produced by blasting operations through intelligent and empirical models. Environ Earth Sci, 75, 1137.
Hair, J., Black, W., Babin, B., Anderson, R., & Tathan, R. (2009). Análise Multivariada de Dados. 6. ed. Bookman, Porto Alegre, Brasil.
Haykin, S. (2001). Redes neurais: princípios e prática. Bookman, Porto Alegre, Brasil.
Hosseini, S. A., Tavana, A., Abdolahi, S. M., & Darvishmaslak, S. (2019). Prediction of blast‑induced ground vibrations in quarry sites: a comparison of GP, RSM and MARS, Soil Dynamics and Earthquake Engineering, 119, 118–129.
Indian Standard. (1973). Criteria for safety and design of structures subjected to under ground blast, ISI., IS-6922.
Iphar, M., Yavuz, M., & Ak, H. (2008). Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system. Environ Geol, 56:97–107.
Khandelwal, M., Kumar, D. L., & Yellishetty, M. (2011). Application of soft computing to predict blast-induced ground vibration. Eng Comput, 27, 2, 117–125.
Khandelwal, M., & Singh, T. N. (2009). Prediction of blast-induced ground vibration using artificial neural network. Int J Rock Mech Min Sci, 46:1214–22.
Kovács, Z. L. (2002). Redes neurais artificiais: fundamentos e aplicações. 3. ed. Livraria da Física, São Paulo, Brasil.
Langefors, U., & Kihlstrom, B. (1963). The modern technique of rock blasting. Wiley, New York.
Li, D. T., Yan, J. L., & Zhang, L. (2012). Prediction of blast-induced ground vibration using support vector machine by tunnel excavation. Appl Mech Mater, 170:1414–8.
Longjun, D., Xibing, L., Ming, X., & Qiyue, L. (2011). Comparisons of Random Forest and Support Vector Machine for Predicting Blasting Vibration Characteristic Parameters. Procedia Engineering, 26, 1772 – 1781.
Mohamed, M. T. (2011). Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. Int J Rock Mech Min Sci, 48, 5, 845.
Mohamednejad, M., Gholami, R., & Ataei, M. (2012). Comparison of intelligence science techniques and empirical methods for prediction of blasting vibrations. Tunn Undergr Space Technol, 28, 238–244.
Monjezi, M., Ghafurikalajahi, M., & Bahrami, A. (2011). Prediction of blast-induced ground vibration using artificial neural networks. Tunn Undergr Space Technol, 26: 46–50.
Nicholls, H. R. Johnson, C. F., & Duvall, W. I. (1971). Blasting vibrations and their effects on structures. Pittsburgh: USBM, Bulletin 656.
R Project. (2021). The R Project for Statistical Computing. https://www.r-project.org/
Rajabi, A. M., & Vafaee, A. (2019). Prediction of blast-induced ground vibration using empirical models and artificial neural network (Bakhtiari Dam access tunnel, as a case study). Journal of Vibration and Control, Vol 0 (0), p. 1-12.
Rezaeineshat, A., Monjezi, M., Mehrdanesh, A., & Khandelwal, M. (2020). Optimization of blasting design in open pit limestone mines with the aim of reducing ground vibration using robust techniques. Geomech. Geophys. Geo-energ. Geo-resour. 6:40.
Roy P. P. (1991). Vibration control in an opencast mine based on improved blast vibration predictors. Min Sci Technol,12, 157–65.
Santos, F. L. (2013). Redes neurais artificiais ARTMAP-fuzzy aplicadas ao estudo de agitação marítma e ondas de lagos. Tese de doutorado em Engenharia Elétrica. Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, Brasil.
Silveira, L. G. C. (2017). Controle de vibrações e pressão acústica no desmonte de rochas com explosivos: estudo de caso em uma mina do quadrilátero ferrífero. Dissertação (Mestrado em Engenharia Mineral) - Programa de Pós-Graduação em Engenharia Mineral, Universidade Federal de Ouro Preto, Ouro Preto.
Tissot, H. C., Camargo, L. C., & Pozo, A. T. R. (2012). Treinamento de redes neurais feedforward: comparativo dos algoritmos backpropagation e differential evolution. In: Encontro Brasileiro de Inteligência Artificial, 2012, Porto Alegre, Curitiba, Brasil.
Navarro Torres, V., Silveira, L. G., Lopes, P. F., & Lima, H. M. (2018). Assessing and controlling of bench blasting-induced vibrations to minimize impacts to a neighboring community. Journal of Cleaner Production, 187, 514–524.
Trigueros, E., Cánovas, M., Muñoz, J.M., & Cospedal, J. (2017). A methodology based on geomechanical and geophysical techniques to avoid ornamental stone damage caused by blast-induced ground vibrations. International Journal of Rock Mechanics & Mining Sciences, 93, p. 196–200.
Tuorrini, J. B., & Mello, C. H. P. (2012). Metodologia de pesquisa em engenharia de produção. UNIFEI, Itajubá.
Yan, Y., Hou, X., & Fei, H. (2020). Review of predicting the blast-induced ground vibrations to reduce impacts on ambient urban communities. Journal of Cleaner Production, 260, 121-135.
Zhou, J., Asteris, P. G., Armaghani, D. J., & Pham, B. T. (2020). Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models. Soil Dynamics and Earthquake Engineering, 139, 106390
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Caroline Belisário Zorzal; Francisco Lledo dos Santos; José Margarida da Silva; Rafael de Freitas Souza
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.