Pirólisis por microondas de residuos de poliestireno expandido utilizando negro de carbón como catalizador
DOI:
https://doi.org/10.33448/rsd-v11i11.34058Palabras clave:
Residuos de poliestireno; Catálisis; Tratamiento de desechos.Resumen
Los materiales poliméricos están cada vez más presentes en la vida cotidiana y son desechados a gran escala, constituyendo un reto para su reciclaje. Este trabajo estudió la despolimerización por microondas de residuos de poliestireno expandido (EPS) utilizando negro de carbón como catalizador. La pirólisis catalítica se investigó en cinco proporciones de catalizador a polímero (0,0125:1, 0,125:1, 0,25:1, 0,5:1, 1:1). La pirólisis asistida por microondas tuvo lugar a 400 W en un tiempo fijo de 12 minutos. Se realizaron espectroscopia infrarroja por transformada de Fourier (FTIR) y análisis termogravimétrico (TGA) para evaluar la despolimerización. El mayor rendimiento de gases no condensables se obtuvo en la relación 0,25:1 con un rendimiento de gas del 53%. El análisis FTIR de la fracción líquida en la proporción 0,25:1 mostró nuevas bandas de absorción y nuevos picos de degradación a temperaturas más bajas se observaron en termogravimetría en comparación con los residuos de EPS. Este estudio demostró la posibilidad de despolimerización de EPS mediante microondas utilizando estructuras carbonosas, lo que puede contribuir al reciclaje de EPS.
Citas
Bartoli, M., Rosi, L., Frediani, M., Undri, A., & Frediani, P. (2015). Depolymerization of polystyrene at reduced pressure through a microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 113, 281-287.
Broido, A. (1969). A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal of Polymer Scemce.Part A, 7, 1761–1773.
Bhattacharya, M. & Basak, T. (2016). A review on the susceptor assisted microwave processing of materials. Energy, 97, 306-338.
Hussain, Z., Mohammed Khan, K., Perveen, S., Hussain, K., & Voelter, W. (2012). The conversion of waste polystyrene into useful hydrocarbons by microwave-metal interaction pyrolysis. Fuel Processing Technology, 94(1), 145-150.
Jiang, H., Liu, W., Zhang, X., & Qiao, J. (2020). Chemical Recycling of Plastics by Microwave-Assisted High-Temperature Pyrolysis. Global Challenges, 1 4, 201900074.
Khan, N., Bhatti, M., Obaid, A., Sami, A., & Ullah, A. (2020). Do green human resource management practices contribute to sustainable performance in manufacturing industry?, International Journal of Environment and Sustainable Development, 19 (4), 412-432.
León-Bermúdez, A-Y., and Salazar, R. (2008).Synthesis and characterization of the polystyrene-asphaltene graft copolymer by FT-IR spectroscopy. CT&F - Ciencia, Tecnología y Futuro, 3(4), 157-167.
Li, K., Chen, J., Chen, G., Peng, J., Ruan, R., & Srinivasakannan C. (2019). Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore. Bioresource Technology, 286, 121381.
Menéndez, J.A, Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E.G., & Bermudez Menendez, J. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91, 1–8.
Mo, Y., Zhao, L., Chen, C.L., Tan, G.Y.A., & Wang, J-Y. (2013). Comparative pyrolysis upcycling of polystyrene waste: thermodynamics, kinetics, and product evolution profile. Journal of Thermal Analysis and Calorimetry, 111, 781–788.
Morais, M. de O., Vidigal, H. (2021). The reverse logistics process applied to the EPS product (ISOPOR). Research, Society and Development, 10(2), e52910212908.
Murad, Md. W. & Alam, Md. M. (2019). The environmental resource management paradox in an impoverished urban population: a case study from Malaysia. International Journal of Environment and Sustainable Development, 18(4), 353-368.
Nasybullin, A.R., Danilaev, M.P., & Bogoslov, E.A. (2015). Research of the thermal destruction mechanism of non-absorbing polymers with microwave energy exposure in X International Conference on Antenna Theory and Thecniques, IEEE, Kharkiv, Ukraine, pp. 1-3.
Poletto, M. & Zattera, A. J. (2017) Mechanical and dynamic mechanical properties of polystyrene composites reinforced with cellulose fibers: Coupling agent effect. Journal of Thermoplastic Composite Materials, 30(9), 1242–1254.
Prathiba, R., Shruthi, M., and Miranda, L.R. (2018). ‘Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple.’ Waste Management, 76, 528-536.
Premalatha, N., Prathiba, R., Miranda, M.A., & Miranda, L.R. (2021). Pyrolysis of polypropylene waste using sulfonated carbon catalyst synthesized from sugarcane bagasse. Journal of Material Cycles and Waste Management, 23, 1002–1014.
Rosi, L., Bartoli, M., & Frediani, M. (2018). Microwave assisted pyrolysis of halogenated plastics recovered from waste computers. Waste Management, 73, 511-522.
Rex, P., Masilamani, I.P., & Miranda, L.M. (2020). Microwave pyrolysis of polystyrene and polypropylene mixtures using different activated carbon from biomass. Journal of the Energy Institute, 93(5), 1819-1832,
Silva, J. C. da ., Santos, L. J. da C. ., Lustosa, S. M. C. ., Silva, G. de A. ., Paz, G. M. da ., Viana, D. dos S. F. & Viana, V. G. F. (2022) Thermal and toxicological analysis of commercial polystyrene with recycled polystyrene, Research, Society and Development, 11(1), e55911124904.
Suriapparao, D.V., Nagababu, G., Yerrayya, A., & Sridevi, V. (2021). Optimization of microwave power and graphite susceptor quantity for waste polypropylene microwave pyrolysis. Process Safety and Environmental Protection, 149, 234-243.
Undri, A., Frediani, M., Rosi, L., & Frediani, P. (2014). Reverse polymerization of waste polystyrene through microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 105, 35-42.
Yassin, A.Y., Mohamed, A-R., Abdelrazek, E.M., Morsi, M.A., & Abdelghany, A.M. (2019). Structural investigation and enhancement of optical, electrical and thermal properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/graphene oxide nanocomposites. Journal of Materials Research and Technology, 8(1), 1111-1120.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Paula de Marco; Matheus Poletto
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.