Estudio de factibilidad utilizando minero continuo

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i13.35619

Palabras clave:

Minero de superficie continua; Estudio de factibilidad; Mina de mineral de Hierro.

Resumen

Junto con todos los desafíos para la minería factible, los fabricantes de equipos desarrollan constantemente nuevas tecnologías, software, equipos de minería y procesamiento de minerales. El enfoque de este artículo es presentar las premisas necesarias para las posibles aplicaciones dentro de la industria minera del Continuous Surface Miner, una máquina que actualmente se utiliza en operaciones de minería de carbón y fosfato y que está siendo evaluada para su incorporación en otros proyectos mineros diversos. Este artículo demuestra la utilización de este equipo en el campo de la ingeniería de minerales y cómo se debe realizar un estudio para su aplicación. El Surface Miner continuo en comparación con los equipos mineros tradicionales, debido a la subestimación de la productividad del material a cortar demanda una mayor disponibilidad de flota de equipos. Los resultados del estudio de factibilidad muestran que el uso del minero continuo de superficie no se presentó como una mejor opción para el equipo de la mina.

Citas

Ali, D. (2022). Advanced Analytics for Surface Mining. In Advanced Analytics in Mining Engineering (pp. 169–179). Springer International Publishing. https://doi.org/10.1007/978-3-030-91589-6_7

Birch, C. (2019). Optimisation of Mining Block Size for Narrow Tabular Gold Deposits. In Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection - MPES 2018 (pp. 121–141). Springer International Publishing. https://doi.org/10.1007/978-3-319-99220-4_10

Campos, B. I. S., Souza, F. R., & Lima, H. M. de. (2022). Variáveis de impacto no sequenciamento de lavra. Research, Society and Development, 11(12), e107111234146. https://doi.org/10.33448/rsd-v11i12.34146

Dey, K., & Bhattacharya, J. (2012). Operation of Surface Miner: Retrospect of a Decade Journey in India. Procedia Engineering, 46, 97–104. https://doi.org/10.1016/j.proeng.2012.09.451

Dey, K., & Ghose, A. K. (2011). Review of Cuttability Indices and A New Rockmass Classification Approach for Selection of Surface Miners. Rock Mechanics and Rock Engineering, 44(5), 601–611. https://doi.org/10.1007/s00603-011-0147-4

Dirkx, R., Kazakidis, V., & Dimitrakopoulos, R. (2018). Stochastic optimisation of long-term block cave scheduling with hang-up and grade uncertainty. International Journal of Mining, Reclamation and Environment, 1–18. https://doi.org/10.1080/17480930.2018.1432009

Kumar, C., Kumaraswamidhas, L. A., Murthy, V. M. S. R., & Prakash, A. (2020). Experimental investigations on thermal behavior during pick-rock interaction and optimization of operating parameters of surface miner. International Journal of Rock Mechanics and Mining Sciences, 133, 104360. https://doi.org/10.1016/j.ijrmms.2020.104360

Origliasso, C., Cardu, M., & Kecojevic, V. (2014). Surface Miners: Evaluation of the Production Rate and Cutting Performance Based on Rock Properties and Specific Energy. Rock Mechanics and Rock Engineering, 47(2), 757–770. https://doi.org/10.1007/s00603-013-0393-8

Pavloudakis, F., Roumpos, C., & Spanidis, P. M. (2022). Optimization of surface mining operation based on a circular economy model. In Circular Economy and Sustainability (pp. 395–418). Elsevier. https://doi.org/10.1016/B978-0-12-821664-4.00005-4

Prakash, A., Murthy, V. M. S. R., & Singh, K. B. (2013). Rock excavation using surface miners: An overview of some design and operational aspects. International Journal of Mining Science and Technology, 23(1), 33–40. https://doi.org/10.1016/j.ijmst.2013.01.006

Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029. https://doi.org/10.1088/1755-1315/1049/1/012029

Queiroz, G. G. O., Souza, F. R., & Campos, B. I. da S. (2020). Comparativo dos modelos de capex para mineração. Research, Society and Development, 9(12), e26091211013. https://doi.org/10.33448/rsd-v9i12.11013

Raghavan, V., Ariff, S., & Kumar, P. P. (2021). Determining the Optimum Utilisation of Continuous Miner for Improving Production in Underground Coal Mines. In New Visions in Science and Technology Vol. 9 (pp. 73–86). Book Publisher International (a part of SCIENCEDOMAIN International). https://doi.org/10.9734/bpi/nvst/v9/14313D

Silva, P. H. M., Silva, M. dos A., & Souza, F. R. (2020). Impacto econômico da lavra de barragens. Research, Society and Development, 9(11), e82391110639. https://doi.org/10.33448/rsd-v9i11.10639

Singh, A. K., Kumar, A., Kumar, D., Singh, R., Ram, S., Kumar, R., & Singh, A. K. (2020). Coal Pillar Extraction Under Weak Roof. Mining, Metallurgy & Exploration, 37(5), 1451–1459. https://doi.org/10.1007/s42461-020-00277-8

Souza, F. R., & Melo, M. (2014). Mining. REM, 67(4), 389–395.

Tatiya, R. R. (2005). Surface and Underground Excavations. Surface and Underground Excavations. https://doi.org/10.1201/9781439834220

Whittle, D. (2011). Open-Pit Planning and Design. Sme Mining Engineering Handbook, 877–901.

Zamorano, S. (2011). Surface Ore Movement, Storage, and Recovery Systems. SME Mining Engineering Handbook, 977–987.

Zha, Z., Ma, L., Li, K., Ding, X., & Xiao, S. (2017). Comparative study of mining methods for reserves beneath end slope in flat surface mines with ultra-thick coal seams. International Journal of Mining Science and Technology, 27(6), 1065–1071. https://doi.org/10.1016/j.ijmst.2017.10.002

Zhao, W., Na, J., Li, M., & Ding, H. (2022). Rotation-Aware Building Instance Segmentation From High-Resolution Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2022.3199395

Descargas

Publicado

08/10/2022

Cómo citar

DITLEF, A.; LIMA, H. M. .; CUNHA, E. R.; SOUZA, F. R. Estudio de factibilidad utilizando minero continuo. Research, Society and Development, [S. l.], v. 11, n. 13, p. e307111335619, 2022. DOI: 10.33448/rsd-v11i13.35619. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35619. Acesso em: 2 jul. 2024.

Número

Sección

Ingenierías