La forestación urbana como bioindicador de la contaminación atmosférica por mercurio: un estudio de caso con Moquilea tomentosa Benth. (Chrysobalanaceae) en la región sur de la Amazonía
DOI:
https://doi.org/10.33448/rsd-v11i14.36557Palabras clave:
Contaminación atmosférica; Metales pesados; Monitoreo ambiental.Resumen
El mercurio (Hg) es considerado internacionalmente como un contaminante global y tiene una alta tasa de dispersión desde sus fuentes de emisión, debido al transporte atmosférico. Teniendo en cuenta que este metal proviene tanto de fuentes naturales como antropogénicas, es importante conocer cuánto Hg se emite, las concentraciones observadas en el ambiente y estimar sus impactos en la salud humana y los ecosistemas. Así, este estudio evaluó la presencia de mercurio en el perímetro urbano de seis municipios de la región norte de Mato Grosso, región sur de la Amazonía, a través del análisis de hojas de la especie arbórea Oiti, Moquilea tomentosa Benth. (Chrysobalanaceae), muy utilizada en la forestación urbana de esta región. Los resultados mostraron diferencias significativas en las concentraciones de mercurio entre los municipios evaluados (ANOVA = p≤ 0,0001), indicando la presencia de este metal pesado en la atmósfera en todos los perímetros urbanos evaluados. El mayor valor medio de Hg se observó en Paranaíta (172,8 µg Kg-1), seguido de Alta Floresta (62,1 µg Kg-1), Carlinda (52,3 µg Kg-1), Nova Canaã do Norte (25,5 µg Kg-1), Colíder (19,3 Kg-1) y Nova Santa Helena (6,8 µg Kg-1). Sin embargo, todas estas concentraciones se encuentran dentro del rango considerado aceptable. Así, se recomienda el uso de M. tomentosa como indicador de la deposición atmosférica de mercurio en áreas urbanas, siendo necesario realizar estudios siguiendo una serie temporal que permita establecer protocolos específicos para diferentes tipos de contaminantes atmosféricos.
Citas
Agra, M. F., Freitas, P. F. & Barbosa-Filho, J. M. (2007). Synopsis of the plants know as medicinal and poisonouns in Northeast of Brasil. Revista Brasileira Farmacognosia, 17(1): 114-140. https://doi.org/10.1590/S0102-695X2007000100021.
Akagi, H. (2004). Manual de análises de mercúrio. Ministério do Meio Ambiente - Japão, 119 p.
Alves, L. L., Monteiro, E. M., Ribeiro, J. L. P., Madureira, N. F. S. & Penido, T. M. A. (2021). Crown projection area of Licania tomentosa (Benth.) Fritsch (Chrysobalanaceae), estimated by linear regression. Brazilian Journal of Development, 7(4), 40150-40159. https://doi.org/10.34117/bjdv7n4-466.
Amos, H. M., Sonke, J. E., Obrist, D., Robins, N., Hagan, N., Horowitz, H. M., Mason, R. P., Witt, M., Hedgecock, I., Corbitt, E. S. & Sunderland, E. (2015). Observational and modeling constraints on global anthropogenic enrichment of mercury. Environmental Science and Technology, 49(7), 4036-4047. https://doi.org/10.1021/es5058665.
Andrade, R. P., Michel, R. F. M., Schaefer, C. E. G. R., Simas, F. N. B. & Windmoller, C. C. (2012). Hg distribution and speciation in Antarctic soils of the Fildes and Ardley peninsulas, King George Island. Antarctic Science, 24(4), 395-407. https://doi.org/10.1017/S0954102012000107.
AMAP - Arctic Monitoring and Assessment Programme (2013). United Nations Environment Programme (UNEP). Global Mercury Assessment: Sources, Emissions, Releases and Environmental Transport, UNEP Chemicals Branch: Geneva, Switzerland.
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M. & Toyota, K. (2015). Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions. Chemical Reviews, 115(10), 3760-3802. https://doi.org/10.1021/cr500667e.
Bacarji, A. G., Vilpoux, O. F. & Paranhos-Filho, A. C. (2021). Impacts of agrarian reform on land use in the biomes of the Midwest region of Brazil between 2004 and 2014. Annals of the Brazilian Academy of Sciences, 93(1): e20181106. https://doi.org/10.1590/0001-3765202120181106.
Birke, M., Rauch, U. & Hofmann, F. (2018). Tree bark as a bioindicator of air pollution in the city of Stassfurt, Saxony-Anhalt, Germany. Journal of Geochemical Exploration, 187, 97-117. https://doi.org/10.1016/j.gexplo.2017.09.007.
Brasil (2021) Instrução normativa nº 88, de 26 de março de 2021. Dispõe sobre Os limites máximos tolerados (LMT) de contaminantes em alimentos, os princípios gerais para o seu estabelecimento e os métodos de análise para fins de avaliação de conformidade. Ministério da Saúde, Agência Nacional de Vigilância Sanitária. https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-487-de-26-de-marco-de-2021-311593455. Acesso 28 jun 2021.
Brignole, D., Drava, G., Minganti, V., Giordani, P., Samson, R., Vieira, J., Pinho, P. & Branquinho, C. (2017). Chemical and magnetic analyses on tree bark as an effective tool for biomonitoring: A case study in Lisbon (Portugal). Chemosphere, 195, 508-514. https://doi.org/10.1016/j.chemosphere.2017.12.107.
Carvalho, T. S. & Domingues, E. P. (2016). Projeção de um cenário econômico e de desmatamento para a Amazônia Legal brasileira entre 2006 e 2030. Nova Economia, 26(2), 585-621. http://dx.doi.org/10.1590/0103-6351/2665.
Casagrande, G. C. R., Franco, D. N. M., Moreno, M. I. C., Andrade, E. A., Battirola, L. D. & Andrade, R. L. T. (2020). Assessment of atmospheric mercury deposition in the vicinity of artisanal and small-scale gold mines using Glycine max as Bioindicators. Water, Air & Soil Pollution, 231, 551. https://doi.org/10.1007/s11270-020-04918-y.
Castro, L. F. & Sisenando, H. A. (2017). Monitoramento da qualidade do ar por meio do ensaio com Tradescantia pallida na cidade do Rio de Janeiro/Brasil. Revinter, 10(3), 101-115. https://doi.org/10.22280/revintervol10ed3.313.
Coelho, R. V. F. & Faria, A. M. M. (2014). Mapeamento de empresas industriais no estado de Mato Grosso. Revista de Estudos Sociais, 16(32), 62-84. https://periodicoscientificos.ufmt.br/ojs/index.php/res/article/view/2074.
Dettori, M., Deiana, G., Balleto, G., Borruso, G., Murgante, B., Arghittu, A., Azara, A. & Castiglia, P. (2021). Air pollutants and risk of death due to COVID-19 in Italy. Environmental Research, 192, 110459. https://doi.org/10.1016/j.envres.2020.110459.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. (2013). Mercury as a global 299 pollutant: Sources, pathways, and effects. Environmental Science and Technology, 47(10), 4967-4983. https://doi.org/10.1021/es305071v.
Evers, D. C., Egan Keane, S., Basu, N. & Buck, D. (2016). Evaluating the effectiveness of the Minamata Convention on Mercury: Principles and recommendations for next steps. Science of The Total Environment, 569/570, 888-903. https://doi.org/10.1016/j.scitotenv.2016.05.001.
Fu, X., Zhang, H., Liu, C., Zhang, H., Lin, C. & Feng, X. (2019). Significant seasonal variations in isotopic composition of atmospheric total gaseous mercury at forest sites in China caused by vegetation and mercury sources. Environmental Science and Technology, 53(23), 13748-13756. https://doi.org/10.1021/acs.est.9b05016.
Gonzalez-Raymat, H., Liu, G., Liriano, C., Li, Y., Yin, Y., Shi, G. J. & Cai, Y. (2017). Elemental mercury: Its unique properties affect its behavior and fate in the environment. Environmental Pollution, 229, 69-86. https://doi.org/10.1016/j.envpol.2017.04.101.
Hawkins, D. & Weisberg, S. (2017). Combining the Box-Cox power and generalized log transformations to accommodate nonpositive responses in linear and mixed effects linear models. South African Statistical Journal, 51(2). https://journals.co.za/doi/epdf/10.10520/EJC-bd05f9440
Hilson, G., Zolnikovb, T. R., Ortizc, D. R. & Kumah, C. (2018). Formalizing artisanal gold mining under the Minamata convention: Previewing the challenge in Sub-Saharan Africa. Environmental Science and Policy, 85, 123-131. https://doi.org/10.1016/j.envsci.2018.03.026.
Howard, D., Macsween, K., Edwards, G. C., Desservettaz, M., Guérette, E., Paton-Walsh, N., Surawski, N. C., Sullivan, A., Weston, C., Volkova, L., Powell, J., Keywood, M. D., Reisen, F. & Meyer, C. P. (2019). Investigation of mercury emissions from burning of Australian eucalypt forest surface fuels using a combustion wind tunnel and field observations. Atmospheric Environment, 202, 17-27. https://doi.org/10.1016/j.atmosenv.2018.12.015.
IBGE - Instituto Brasileiro de Geografia e Estatística (2011). Censo Demográfico 2010, Área territorial brasileira. Rio de Janeiro: IBGE. https://cidades.ibge.gov.br/brasil/mt/panorama. Acesso 23 mai 2021.
IBGE - Instituto Brasileiro de Geografia e Estatística (2021). Diretoria de Pesquisas, Coordenação de População e Indicadores Sociais, 2021 [acesso em 11 de maio de 2021]. Área da unidade territorial: Área territorial brasileira. Rio de Janeiro. https://cidades.ibge.gov.br/brasil/mt/panorama. Acesso 11 mai 2021.
Ishtiaq, M., Hussain, A., Maqbool, M., Mushtaq, W., Azam, A., Shahzaman, M. & Mehmood, H. (2017). Comparative study on effect of auto-vehicular pollution on morphology and anatomy of two common plant species from Urban areas of Gujrat and Bhimber (AJK), Pakistan. International Journal of Biosciences, 10(3), 265-274. http://dx.doi.org/10.12692/ijb/10.3.265-274
Jardim, W. S., Cardoso, K. M. & Jesus, C. P. (2021). Caracterização e utilização de três espécies da arborização urbana no biomonitoramento de material particulado. Revista Brasileira de Meio Ambiente, 9(2), 23-32.
Janta, R. & Chantara, S. (2017). Tree bark as bioindicator of metal accumulation from road traffic and air quality map: A case study of Chiang Mai, Thailand. Atmospheric Pollution Research, 8(5), 956-967. https://doi.org/10.1016/j.apr.2017.03.010.
Jesus, L. D. F., Moreira, M. F. R., Azevedo, S. V., Borges, R. M., Gomes, R. A. A., Bergamini, F. P. B. & Teixeira, L. R. (2018). Lead and mercury levels in an environmentally exposed population in the Central Brazil. Reports in Public Health, 34(2), e00034417. https://doi.org/10.1590/0102-311x00034417.
Kirby, A., Rucevska, I., Yemelin, V., Cooke, C., Simonett, O., Novikov, V. & Hughes, G. (2013). Mercury Time to act. UNEP. https://grid.cld.bz/Mercury-Time-to-Act/28. Acesso 20 mai 2021.
Kruskal, W. H., & Wallis, W. A., (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583-621. https://doi.org/10.2307/2280779.
Lakatos, E. M., & Marconi, M. A. (2003). Fundamentos de Metodologia Científica. 5ªEdição. Ed. Atlas, São Paulo.
Leandro, D. S., Lessa, D., Silva, R. A., Mendes, S. O. & Duartes, T. E. P. N. (2018). Estudos para uso de organismos potencialmente bioindicadores e biomonitores. Biodiversidade, 17(2), 115-130.
Li, Q., Tang, L., Qiu, G. & Liu, C. (2020). Total mercury and methylmercury in the soil and vegetation of a riparian zone along a mercury-impacted reservoir. Science of the Total Environment, 738, 139794. https://doi.org/10.1016/j.scitotenv.2020.139794.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A. & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontier in Public Health, 8, 1-13. https://doi.org/10.3389/fpubh.2020.00014.
Massaro, L. & Theije, M. (2018). Understanding small-scale gold mining practices: An anthropological study on technological innovation in the Vale do Rio Peixoto (Mato Grosso, Brazil). Journal of Cleaner Production, 204(10), 618-635. https://doi.org/10.1016/j.jclepro.2018.08.153.
Mato Grosso (2021). Prefeitura Municipal de Paranaíta, História do município. Mato Grosso. https://www.paranaita.mt.gov.br/O-Municipio/Historia-do-Municipio/. Acesso 18 mai 2021.
May Júnior, J. A., Guigley, H., Hoogesteijn, R., Tortato, F. R., Devlin, A, Carvalho Júnior, R. M., Morato, R. G., Sartorello, L. R., Rampim, L. E., Haberfeld, M., Paula, R. C. & Zocche, J. J. (2018). Mercury content in the fur of jaguars (Panthera onca) from two areas under different levels of gold mining impact in the Brazilian Pantanal. Annals of the Brazilian Academy of Sciences, 90(2 Suppl. 1), 2129-2139. https://doi.org/10.1590/0001-3765201720170190.
Medeiros, J. L., Almeida, T. S., Lopes-Neto, J. J., Almeida-Filho, L. C. P., Ribeiro, P. R. V., Brito, E. S., Morgano, M. A., Silva, M. G., Farias, D. F. & Carvalho, A. F. U. (2020). Chemical composition, nutritional properties, and antioxidant activity of Licania tomentosa (Benth.) fruit. Food Chemistry, 313, 126117. https://doi.org/10.1016/j.foodchem.2019.126117.
Miranda, M. M., Gonçalves, J. L., Romanos, M. T., Silva, M. H., Ejzemberg, R., Granja, L. F. & Wigg, M. D. (2002). Anti-herpes simplex vírus effect of a seed extract from tropical plant Licania tomentosa (Beth) Fritsch (Chrysobalanaceae). Phytomedicine, 9(7), 641-645. https://doi.org/10.1078/094471102321616463.
Miranda, M. M., Jesus, I. M., Faial, K. R. F., Lima, M. O. & Asmus, C. I. R. F. (2020). Risco epidemiológico de transmissão vertical do mercúrio na região de fronteira na Pan Amazônia. In: Dal Molin, R. S. Saúde Em Foco Temas Contemporâneos – Volume 3. Guarujá, SP: Científica Digital.
Moreira-Araújo, R. S. R., Barros, N. V. A., Porto, R. G. C. L., Brandão, A. C. A. S., Lima, A. & Fett, R. (2019). Bioactive compounds and antioxidant activity three fruit species from the Brazilian Cerrado. Revista Brasileira de Fruticultura. https://doi.org/10.1590/0100-29452019011.
Moodya, K. H., Hasana, K. M., Aljica, S., Blakemana, V. M., Hicksa, L. P., Lovinga, D. C., Moorea, M. E., Hammetta, B. S., Silva-González, M., Seneya, C. S. & Kiefera, A. M. (2020). Mercury emissions from Peruvian gold shops: Potential ramifications for Minamata compliance in artisanal and small-scale gold mining communities. Environmental Research, 182, 109042. https://doi.org/10.1016/j.envres.2019.109042.
Neto, A. P. N., Costa, L. C. S. M., Kikuchi, A. N. S., Furtado, D. M. S., Araujo, M. Q. & Melo, M. C. C. (2012). Method validation for the determination of total mercury in fish muscle by cold vapour atomic absorption spectrometry. Food Additives and Contaminants, 29(4), 617-624. https://doi.org/10.1080/19440049.2011.642009.
Olson, C. I., Fakhraei, H. & Driscoll, C. T. (2020). Mercury emissions, atmospheric concentrations, and wet deposition across the conterminous United States: Changes over 20 years of monitoring. Environmental Science and Technology Letters, 7(6), 376-381. https://doi.org/10.1021/acs.estlett.0c00185.
Prasetia, H., Sakakibara, M., Omori, K., Laird, J. S., Sera, K. & Kurmiawan, I. A. (2018). Mangifera indica as bioindicator of mercury atmospheric contamination in an ASGM area in north Gorontalo Regency, Indonesia. Geosciences, 8(1), 31. https://doi.org/10.3390/geosciences8010031.
QGIS.org, 2021. QGIS Geographic Information System. QGIS Association. http://www.qgis.org.
Ribeiro, T. G, Chávez-Fumagalli, M. A., Valadares, D. G., Franca, J. R., Lage, P. S., Duarte, M. C., Andrade, P. H. R., Martins, V. T., Costa, L. E., Arruda, A. L. A., Faraco, A. A. G., Coelho, E. A. F. & Castillo, R. O. (2014). Antileishmanial activity and cytotoxicity of Brazilian plants. Experimental Parasitology, 143, 60-68. http://dx.doi.org/10.1016/j.exppara.2014.05.004.
Saiz-Lopez, A., Sitkiewicz, S. P., Roca-Sanjuán, D., Oliva-Enrich, J. M., Dávalos, J. Z., Notario, R., Jiskra, M., Xu, Y., Wang, F., Trackray, C. P., Sunderland, E. M., Jacob, D. J., Travnikov, O., Cuevas, C. A., Acunã, A. U., Rivero, D., Plane, J. M. C., Kinnison, D. E. & Sonke, J. E. (2018). Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition. Nature Communications, 9, 4796. https://doi.org/10.1038/s41467-018-07075-3.
Scott, A. & Knott, M. (1974). Cluster-analysis method for grouping means in analysis of variance. Biometrics, 30(3), 507-512. https://doi.org/10.2307/2529204.
Seccatore, J., Veiga, M., Origliasso, C., Marin, T. & Tomi, G. (2014). An estimation of the artisanal small-scale production of gold in the world. Science of the Total Environment, 496, 662-667. http://dx.doi.org/10.1016/j.scitotenv.2014.05.003.
Shahid, M., Dumat, C., Khalida, S., Schreck, E., Xiong, T. & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. Journal of Hazard Materials, 325, 36-58. https://doi.org/10.1016/j.jhazmat.2016.11.063.
Silva, R. R., Branco, J. C., Thomaz, S. M. T. & Cesar, A. (2017). Convenção de Minamata: análise dos impactos socioambientais de uma solução em longo prazo. Saúde em Debate, 41, 50-62. https://doi.org/10.1590/0103-11042017s205.
Silva, A. D. P., Batista, A. C., Giongo, M. V., Biondi, D., Santos, A. F., Oliveira, L. M. & Cachoeira, J. N. (2019). Arborização das praças de Gurupi – To – Brasil: composição e diversidade de espécies. REVSBAU, 14(4), 1-12. http://dx.doi.org/10.5380/revsbau.v14i4.67547.
Silva, L. F. O., Pinto, D., Neckel, A., Dotto, G. L. & Oliveira, M. L. S. (2020). The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil. Chemosphere, 251, 126838. https://doi.org/10.1016/j.chemosphere.2020.126838.
Simone, F. D., Cinnirella, S., Gencarelli, C. N., Yang, X., Hedgecock, I. M. & Pirrone, N. (2015). Model study of global mercury deposition from biomass burning. Environmental Science and Technology, 49(11), 6712-6721. https://doi.org/10.1021/acs.est.5b00969.
Souza, A. P., Mota, L. L., Zamadei, T., Martim, C. C., Almeida, F. T. E. & Paulino, J. (2013). Classificação climática e balanço hídrico climatológico no estado de Mato Grosso. Nativa, 1(1), 34-43. http://10.31413/nativa.v1i1.1334.
Streets, D. G., Horowitz, H. M., Jacob, D. J., Lu, Z., Levin, L., Shure, A. F. H. T. & Sunderland, E. M. (2017). Total mercury released to the environment by human activities. Environmental Science and Technology, 51(11), 5969-5977. https://doi.org/10.1021/acs.est.7b00451.
Sundseth, K., Pacyna, J. M., Pacyna, E. G., Pirrone, N. E. & Thorne, R. J., (2017). Global sources and pathways of mercury in the context of human health. International Journal of Environmental Research and Public Health, 14(1), 105. https://doi.org/10.3390/ijerph14010105.
Tak, A. A. & Kakde, U. B. (2020). Biochemical, morphological and anatomical changes in tree foliage exposed to vehicular pollution. International Journal of Environment, Agriculture and Biotechnology, 5(2), 1-10. https://doi.org/10.22161/ijeab.53.23.
Tegegne, Y., Lindner, M., Fobissie, K. & Kanninem, M. (2016). Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: exploring possible policy options to address forest loss. Land Use Policy, 51, 312-324. https://doi.org/10.1016/j.landusepol.2015.11.024.
Thomson Reuters, 2018. GFMS Gold Survey 2018. https://bit.ly/2RgYwCR. Acesso em 20 mai 2021.
Turkyilmaz, A., Sevik, H., Cetin, M. & Saleh, E. A. A. (2018a). Changes in heavy metal accumulation depending on traffic density in some landscape plants. Polish Journal of Environmental Studies, 27(5), 2277-2284. https://doi.org/10.15244/pjoes/78620.
Turkyilmaz. A., Sevik, H., Isinkaralar, K. & Cetin, M. (2018b). Using Acer platanoides annual rings to monitor the amount of heavy metals accumulated in air. Environmental Monitoring and Assessment, 190, 578. https://doi.org/10.1007/s10661-018-6956-0.
Turkyilmaz. A., Sevik, H., Isinkaralar, K. & Cetin, M. (2019). Use of tree rings as a bioindicator to observe atmospheric heavy metal deposition. Environmental Science and Pollution Research, 26, 5122-5130. https://doi.org/10.1007/s11356-018-3962-2.
UN Environment - United Nations Enviromment Programme. (2013). Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. United Nations Pubns, Geneva. https://wedocs.unep.org/handle/20.500.11822/7984. Acesso em 13 mai 2021.
UN Environment - United Nations Environment. (2017). Minamata Convention on Mercury - Text and Annexes. http://www.mercuryconvention.org/Portals/11/documents/Booklets/COP1%20version/Minamata-Convention-booklet-eng-full.pdf. Acesso em 13 mai 2021.
UN Environment - United Nations Enviromment. (2019). Global Mercury Assessment 2018. http://www.unenvironment.org/resources/publication/globalmercury-assessment-2018. Acesso 20 de ago 2021.
US EPA - United States Environmental Protection Agency (1997). Mercury Study Report to Congress Health Effects of Mercury and Mercury Compounds, Washington (DC), United States Environmental Protection agency, 1997 EPA-452/R97-007. https://www.epa.gov/sites/default/files/2015-09/documents/volume5.pdf. Acesso em 24 ago 2021.
WHO - World Health Organization. Regional Office for Europe. (2000). Air quality guidelines for Europe: second edition. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/107335. Acesso em 24 mai 2021.
Wolswijk, G., Satyanarayana, B., Dung, L. Q., Siau, Y. F., Ali, A. N. B., Saliu, I. S., Fisol, M. A. B., Gonnelli, C. & Dahdouh-Guebas, F. (2020). Distribution of mercury in sediments, plant and animal tissues in Matang Mangrove Forest Reserve, Malaysia. Journal of Hazardous Materials, 387, 121665. https://doi.org/10.1016/j.jhazmat.2019.121665.
Yousaf, M., Mandiwana, K. L. & Baig, K. S. (2020). Evaluation of Acer rubrum tree bark as a bioindicator of atmospheric heavy metal pollution in Toronto, Canada. Water, Air & Soil Pollution, 231, 382. https://doi.org/10.1007/s11270-020-04758-w.
Zamproni, K., Biondi, D. & Bobrowski, R. (2016). Avaliação quali-quantitativa da espécie Licania tomentosa (Benth.) Fritsch. na arborização viária de Bonito - MS. REVSBAU, 11(2), 45-58. http://dx.doi.org/10.5380/revsbau.v11i2.63421.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Bruna Paz Deecken; Ednaldo Andrade; Cristiano Alves da Costa; Ricardo Lopes Tortorela de Andrade; Leandro Dênis Battirola
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.