Salud Única y un enfoque en Biología Computacional
DOI:
https://doi.org/10.33448/rsd-v11i14.37105Palabras clave:
Salud humana; Animal; Ambiente; Resistencia antimicrobiana; Biología computacional.Resumen
El concepto actual de One Health se basa en la unión de tres pilares inseparables: la salud humana, animal y ambiental, principios que deben ser primordiales en cualquier proyecto o acción en una sociedad. La visión holística se vuelve fundamental para asegurar niveles de excelencia en el conjunto del área de la salud, además de prevenir y combatir numerosas enfermedades y patologías mediante la actuación integrada de los profesionales de estas tres áreas. Sin embargo, One Health surge como un concepto mundial y varios proyectos se están basando en esta buena práctica común integrada con las tecnologías más destacadas en la actualidad, como la biología computacional. De hecho, también se están modificando medidas y leyes nacionales en pos del principio de ser basado en todos los lugares y situaciones que necesitan utilizar recursos ambientales o animales para cualquier circunstancia. El objetivo principal de esta breve revisión bibliográfica es ejemplificar el concepto del enfoque One Health a partir de artículos que aplicaron el concepto de manera práctica, con énfasis en medidas profilácticas, aplicaciones en bioinformática y resultados presentados con este conocido fundamento.
Citas
Aguiar-Oliveira, M. D. L., Campos, A., R. Matos, A., Rigotto, C., Sotero-Martins, A., Teixeira, P. F., & Siqueira, M. M. (2020). Wastewater-based epidemiology (WBE) and viral detection in polluted surface water: A valuable tool for COVID-19 surveillance—A brief review. International journal of environmental research and public health, 17(24), 9251.
Ahmad, F., Saeed, Q., Shah, S. M. U., Gondal, M. A., & Mumtaz, S. (2022). Environmental sustainability: challenges and approaches. Natural Resources Conservation and Advances for Sustainability, 243-270.
Anishchenko, I., Pellock, S. J., Chidyausiku, T. M., Ramelot, T. A., Ovchinnikov, S., Hao, J., ... & Baker, D. (2021). De novo protein design by deep network hallucination. Nature, 600(7889), 547-552.
Butler, C. C., Dorward, J., Yu, L. M., Gbinigie, O., Hayward, G., Saville, B. R., ... & Hobbs, F. R. (2021). Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomized, controlled, open-label, adaptive platform trial. The Lancet, 397(10279), 1063-1074.
Ceballos, M. C., Sant'Anna, A. C., Boivin, X., de Oliveira Costa, F., Monique, V. D. L., & da Costa, M. J. P. (2018). Impact of good practices of handling training on beef cattle welfare and stock people attitudes and behaviors. Livestock Science, 216, 24-31.
Chakraborty, T., & Barbuddhe, S. B. (2021). Enabling One Health solutions through genomics. The Indian Journal of Medical Research, 153(3), 273.
Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. A. (2021). Machine-learning methods for ligand-protein molecular docking. Drug discovery today, 27, 151–164.
de Souza Suguiura, I. M. (2019). Leptospirose no estado do Paraná, Brasil: uma abordagem de saúde única. Revista de Saúde Pública do Paraná, 2(2), 77-84.
dos Santos, R. D. S. B., Mendes, D. C., Muniz, M. F. A. A., da Conceição, L. H. C., de Mello, M. L. V., & Martins, A. V. (2020). Saúde Única nas atividades de campo com estudantes da Faculdade De Medicina Veterinária Do Unifeso. Revista da JOPIC, 3(7).
Galvão, LB, Gomes, P. da S., Assis, NA de, Amaral, AVC do, Ramos, DG de S., Sousa, DB de S., Gitti, CB, Galarza, MFC, Romani, AF, Cruz, C. de A., Mathias, LA, & Meirelles-Bartoli, RB (2020). Análise da distribuição geográfica e caracterização soroepidemiológica da leptospirose em bovinos abatidos em frigoríficos do Sudoeste de Goiás, Brasil. Research, Society and Development, 9 (7), e390974235. https://doi.org/10.33448/rsd-v9i7.4235
Galvao, M. C. B., Pluye, P., & Ricarte, I. L. M. (2017). Métodos de pesquisa mistos e revisões de literatura mistas: conceitos, construção e critérios de avaliação. InCID: Revista De Ciência Da Informação E Documentação, 8(2), 4-24. https://doi.org/10.11606/issn.2178-2075.v8i2p4-24
Garcia, S. N., Osburn, B. I., & Cullor, J. S. (2019). A one health perspective on dairy production and dairy food safety. One Health, 7, 100086.
Greger, M. (2021). Primary pandemic prevention. American Journal of Lifestyle Medicine, 15(5), 498-505.
Limongi, J. E., & de Oliveira, S. V. (2020). COVID-19 e a abordagem One Health (Saúde Única): uma revisão sistemática. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia, 8(3), 139-149.
McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial resistance: a one health perspective. Microbiology spectrum, 6(2), 6-2.
Metcalf, C. J. E., Morris, D. H., & Park, S. W. (2020). Mathematical models to guide pandemic response. Science, 369(6502), 368-369.
Mwanga, G., Mbega, E., Yonah, Z., & Chagunda, M. G. G. (2020). How Information Communication Technology Can Enhance Evidence-Based Decisions and Farm-to-Fork Animal Traceability for Livestock Farmers. The Scientific World Journal, 2020.
Nicastro, R., & Carillo, P. (2021). Food loss and waste prevention strategies from farm to fork. Sustainability, 13(10), 5443.
Nguyen, N. D., & Wang, D. (2020). Multiview learning for understanding functional multiomics. PLoS computational biology, 16(4), e1007677.
Peng, M., Tabashsum, Z., Anderson, M., Truong, A., Houser, A. K., Padilla, J., ... & Biswas, D. (2020). Effectiveness of probiotics, prebiotics, and prebiotic‐like components in common functional foods. Comprehensive reviews in food science and food safety, 19(4), 1908-1933.
Pérez Santín, E., Rodríguez Solana, R., González García, M., García Suárez, M. D. M., Blanco Díaz, G. D., Cima Cabal, M. D., ... & López Sánchez, J. I. (2021). Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 11(5), e1516.
Resende, J. A., Lúcia da Silva, V., & Diniz, C. G. (2020). Aquatic environments in the One Health context: modulating the antimicrobial resistance phenomenon. Acta Limnologica Brasiliensia, 32.
Shivaprakash, K. N., Swami, N., Mysorekar, S., Arora, R., Gangadharan, A., Vohra, K., ... & Kiesecker, J. M. (2022). Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability, 14(12), 7154.
Shurson, G. C., Urriola, P. E., & van de Ligt, J. L. (2022). Can we effectively manage parasites, prions, and pathogens in the global feed industry to achieve One Health? Transboundary and Emerging Diseases, 69(1), 4-30.
Silvestrini, A. R., Heinemann, M. B., & de Castro, A. M. M. G. (2019). Leptospirose no contexto da Saúde Única e diretrizes de vacinação. Pubvet, 14, 137.
Sinclair, J. R. (2019). Importance of a One Health approach in advancing global health security and the Sustainable Development Goals. Revue scientifique et technique (International Office of Epizootics), 38(1), 145-154.
Straathof, A. J., Wahl, S. A., Benjamin, K. R., Takors, R., Wierckx, N., & Noorman, H. J. (2019). Grand research challenges for sustainable industrial biotechnology. Trends in biotechnology, 37(10), 1042-1050.
Tesfaye, W., Suarez-Lepe, J. A., Loira, I., Palomero, F., & Morata, A. (2019). Dairy and nondairy-based beverages as a vehicle for probiotics, prebiotics, and symbiotics: Alternatives to health versus disease binomial approach through food. In Milk-based beverages (pp. 473-520). Woodhead Publishing.
Vishnoi, S., Matre, H., Garg, P., & Pandey, S. K. (2020). Artificial intelligence and machine learning for protein toxicity prediction using proteomics data. Chemical Biology & Drug Design, 96(3), 902-920.
World Health Organization. (2020). The future of food safety: transforming knowledge into action for people, economies and the environment: technical summary by FAO and WHO.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Sarah de Oliveira Rodrigues; Gabriel Ferrari de Oliveira; Júlia Cantos Franco; Isabela Bacelar de Assis; Kolawole Banwo; Jorge Pamplona Pagnossa

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.