Determinación de un Índice de Condición Atmosférica con Herramientas de Lógica Paraconsistente Anotada Evidencial

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i16.38428

Palabras clave:

Índice de condición atmosférica; Sistema experto; Lógica paraconsistente; Grado de certeza; Grado de incertidumbre.

Resumen

El objectivo de ese artículo es proponer la creación de un índice de condiciones atmosféricas utilizando herramientas de Inteligencia Artificial. La condición atmosférica se puede obtener a partir de los parámetros que las comunidades científicas -ambiental, de salud, de seguridad laboral- adoptan para los diferentes contaminantes de la atmósfera. Los parámetros se obtuvieron de la literatura científica y de especialistas, a quienes se consultó sobre los datos objetivos para permitir un análisis a través de un sistema experto. Como los datos provienen de fuentes muy imprecisas, los sistemas de lógica clásica (binarios) no encajan. Optamos por utilizar la Lógica Paraconsistente Anotada Evidencial. Esta lógica no clásica acomoda naturalmente imprecisiones, contradicciones y paracompletos sin el peligro de la trivialización. Por lo tanto, la Lógica Paraconsistente Anotada Evidencial se puede adoptar idealmente como una herramienta valiosa para controlar las condiciones atmosféricas, especialmente en las grandes metrópolis.

Citas

Abe, J. M. (1992). Fundamentos da lógica anotada (Doctoral dissertation, Universidade de São Paulo).

Abe, J. M. (1997). Some aspects of paraconsistent systems and applications. Logique et Analyse, 157.

Da Silva Filho, Ji, J M Abe, Paraconsistent analyzer module, International Journal of Computing Anticipatory Systems, vol. 9, ISSN 1373-5411, ISBN 2-9600262-1-7, 346-352, 2001.

Alyousifi, Y., Kıral, E., Uzun, B., & Ibrahim, K. (2021). New Application of Fuzzy Markov Chain Modeling for Air Pollution Index Estimation. Water, Air, & Soil Pollution, 232(7), 1-13.

Asif, Z., & Chen, Z. (2019). An integrated optimization and simulation approach for air pollution control under uncertainty in open-pit metal mine. Frontiers of Environmental Science & Engineering, 13(5), 1-14.

Bonilla, S. H., Papalardo, F., Tassinari, C. A., Sacomano, J. B., & de Carvalho, F. R. (2019). Contribution of the Paraconsistent Tri-Annotated Logic to emergy accounting and decision making. Ecological Modelling, 393, 98-106.

Bougoudis, I., Demertzis, K., Iliadis, L., Anezakis, V. D., & Papaleonidas, A. (2018). FuSSFFra, a fuzzy semi-supervised forecasting framework: the case of the air pollution in Athens. Neural Computing and Applications, 29(7), 375-388.

CETESB, (2020a). Companhia Ambiental do Estado de São Paulo (Environmental Company of the State of São Paulo, in Portuguese). Air Quality - Pollutants. Brazil.

CETESB, (2020b). Companhia Ambiental do Estado de São Paulo (Environmental Company of the State of São Paulo, in Portuguese). Air Quality Index - IOAr. Brazil.

CHINA-AQS. (2016). Environmental Quality Standards in China: Air Quality Standards. https://www.transportpolicy.net/standard/china-air-quality-standards/#

Chung, C. J., Hsieh, Y. Y., & Lin, H. C. (2019). Fuzzy inference system for modeling the environmental risk map of air pollutants in Taiwan. Journal of environmental management, 246, 808-820.

CONAMA. (2019). Air Quality Indicators. An overview about the pollutants of the air. Brazil.

Da Costa, N. C. A., & Vago, C. (1991). VS Subrahmanian-The Paraconsistent Logics P¿. Zeitschr. f. math. Logik und Grundlagen d. Math, Bd, 37, 139-148.

Costa, N. A. C., Abe, J. M., & Subrahmanian, U. S. (1991). Remarks on annotated logic.

Da Silva Filho, J. I., Torres, G. L., & Abe, J. M. (2010). Uncertainty treatment using paraconsistent logic: Introducing paraconsistent artificial neural networks (Vol. 211). IOS Press.

De Carvalho, F. R. (2002). Paraconsistent Logic Applied in Decision Making: an approach to university administration (in Portuguese). São Paulo-SP: Editora Aleph.

Carvalho, F. R. D. (2006). Aplicação de lógica paraconsistente anotada em tomadas de decisão na engenharia de produção.

De Carvalho, F. R., & Abe J. M. (2011). Decision Making with Annotated Paraconsistent Logic Tools (in portuguese). São Paulo-SP: Ed. Blucher. ISBN: 9788521206071.

Carvalho, F. R. D., & Abe, J. M. (2018). Decision Rules. In A Paraconsistent Decision-Making Method (pp. 37-40). Springer, Cham.

Dursun, S., Kunt, F., & Taylan, O. (2015). Modelling sulphur dioxide levels of Konya city using artificial intelligent related to ozone, nitrogen dioxide and meteorological factors. International journal of environmental science and technology, 12(12), 3915-3928.

Du, J. L., Liu, Y., & Forrest, J. Y. L. (2019). An interactive group decision model for selecting treatment schemes for mitigating air pollution. Environmental Science and Pollution Research, 26(18), 18687-18707.

EPA-USA. (2019). Environmental Protection Agency, United States. Environmental Quality Index, Overview Report. EPA/600/R-14/305. https://www.epa.gov/criteria-air-pollutants/naaqs-table

European Commission. (2019). Air Quality Standards. https://ec.europa.eu/environment/ air/quality/standards.htm

FEAM (2021). State Environmental Foundation Bulletin - Air Quality. Brazil

Giannetti, B. F., Bonilla, S. H., Silva, C. C., & Almeida, C. M. V. B. (2009). The reliability of experts' opinions in constructing a composite environmental index: The case of ESI 2005. Journal of Environmental Management, 90(8), 2448-2459.

House of Lords. (2017). Library Briefing. Impact of Air and Water Pollution on the Environment and Public Health. Debate on 26 October 2017.

IEMA. (2016). State Institute of Environment and Water Resources. Air quality, IQA. http://iema.es.gov.br.

IEMA. (2017). State Institute of Environment and Water Resources. Air quality, IQA.

INECC. (2014). Mexico’s Ecology Climate Change Institute. Mexico: Air Quality Standards. https://www.transportpolity.net/standard/mexico-air-quality-standards/#links

JAPAN-EQS. (1999). Environmental Quality Stasndards in Japan. Ministry of the Environment, Government of Japan. https://www.env.go.jp/en/moemail/

Jiang, P., Dong, Q., & Li, P. (2017). A novel hybrid strategy for PM2. 5 concentration analysis and prediction. Journal of environmental management, 196, 443-457.

Langa, E. S., Agostinho, F., Liu, G., Almeida, C. M., & Giannetti, B. F. (2021). Journal of Environmental Accounting and Management. Journal of Environmental Accounting and Management, 9(3), 299-318.

Li, Y., Jiang, P., She, Q., & Lin, G. (2018). Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine. Environmental Pollution, 241, 1115-1127.

Liu, H. X., Li, Y. P., & Yu, L. (2019). Urban agglomeration (Guangzhou-Foshan-Zhaoqing) ecosystem management under uncertainty: A factorial fuzzy chance-constrained programming method. Environmental research, 173, 97-111.

MEXICO-AQS (1994). Air Quality Mexican Official Standards, Secretary of Health.

NAAQS. (1997). India’s National Ambient Air Quality Standards. Recuperado em https://cpcb.nic.in/National-Air-Quality-Index/

Oliveira, M. L. (2016). Air quality policies to protect the health of the population. Pan American Health Organization. World Health Organization.

Ostro, B. D. (1994). Estimating the health effects of air pollutants: a method with an application to Jakarta (Vol. 1301). World Bank Publications.

Silva, L. T. (2015). Environmental quality health index for cities. Habitat International, 45, 29-35.

Shimizu, T. (2006). Decisão nas Organizações. (2ª edição). Editora Atlas.

Stossel, Z., Kissinger, M., & Meir, A. (2015). Assessing the state of environmental quality in cities–a multi-component urban performance (EMCUP) index. Environmental pollution, 206, 679-687.

Wang, J., Li, H., & Lu, H. (2018). Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China. Applied Soft Computing, 71, 783-799.

Who, E. (2005). WHORO: Air Quality Guidelines global update. In Report on a Working Group meeting. In. Bonn, Germany.

Xu, Y., Du, P., & Wang, J. (2017). Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China. Environmental pollution, 223, 435-448.

Yang, Z., & Wang, J. (2017). A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction. Environmental research, 158, 105-117.

Zeinalnezhad, M., Chofreh, A. G., Goni, F. A., Klemeš, J. J., Darvishvand, A. M., & Vashaghi, K. (2019, June). Forecasting air pollution by adaptive neuro fuzzy inference system. In 2019 4th international conference on smart and sustainable technologies (SpliTech) (pp. 1-3). IEEE.

Zeng, X. T., Tong, Y. F., Cui, L., Kong, X. M., Sheng, Y. N., Chen, L., & Li, Y. P. (2017). Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China. Journal of environmental management, 197, 507-521.

Descargas

Publicado

14/12/2022

Cómo citar

CARVALHO, F. R. de .; ABE, J. M.; BONILLA, S. H.; ALMEIDA, C. M. V. B. de .; GIANNETTI, B. F. . Determinación de un Índice de Condición Atmosférica con Herramientas de Lógica Paraconsistente Anotada Evidencial. Research, Society and Development, [S. l.], v. 11, n. 16, p. e442111638428, 2022. DOI: 10.33448/rsd-v11i16.38428. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38428. Acesso em: 5 jul. 2024.

Número

Sección

Ingenierías