Recubrimientos de materiales por lecho fluidizado y lecho en chorro: un estudio comparativo

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i17.38731

Palabras clave:

Biopolímeros; Recubrimientos comestibles; Lechos fluidizados; Lechos en chorro.

Resumen

El mayor desafío para la industria alimentaria es la pérdida de calidad de los productos alimenticios durante el almacenamiento. Una alternativa potencial es la aplicación de recubrimientos que proporcionen propiedades de barrera contra la humedad. El recubrimiento de productos con solución por técnicas de aspersión (lechos fluidizados y chorros) se ha desarrollado en la industria farmacéutica y alimentaria. Materiales tales como proteínas, carbohidratos y polisacáridos han sido ampliamente utilizados debido a su biodegradabilidad, biocompatibilidad, no toxicidad y disponibilidad. Este artículo revisa el estado actual de la tecnología de lecho fluidizado y en chorro basado en la estrategia de búsqueda para comprender el desarrollo de estas técnicas en materiales de recubrimiento (partículas, biopolímeros, semillas, extractos y aceites). Esta revisión tiene como objetivo proporcionar información sobre los métodos generales de recubrimiento de productos, como el rociado en lecho fluidizado y el vertido. Esta revisión adoptó un enfoque sistemático para investigar y analizar cuidadosamente los estudios bibliográficos publicados desde los informes iniciales hasta 2021. Después de buscar en Science Direct, Scopus, Web of Science, Capes Perididodos y FSTA - Food Science and Technology Abstracts, se evaluaron los estudios en este estudio. Esta revisión concluye que se realizó un abordaje que arrojó resultados interesantes sobre productos secos, dispositivo de recubrimiento, productos recubiertos con alto valor biológico y tecnológico. Sin embargo, se necesita un enfoque más detallado para avanzar en el conocimiento y acelerar el desarrollo de estos productos para seleccionar materiales de recubrimiento y métodos de aplicación utilizados ampliamente a escala industrial y de laboratorio.

Citas

Aguirre-Joya, J. A., De Leon-Zapata, M. A., Alvarez-Perez, O. B., Torres-León, C., Nieto Oropeza, D. E., Ventura-Sobrevilla, J. M., Aguilar, M. A., Ruelas-Chacón, X., Rojas, R., Ramos-Aguiñaga, M. E., & Aguilar, C. N. (2018). Basic and Applied Concepts of Edible Packaging for Foods. Food Packaging and Preservation, 1–60.

Ananey-Obiri, D., Matthewsa, L., Azahrania, M. H., Ibrahima, S. A., Galanakisb, C. M., & Tahergorabi, R. (2018). Application of protein-based edible coatings for fat uptake reduction in deep-fat fried foods with an emphasis on muscle food proteins. Trends in Food Science & Technology, 80, 167-174.

Andrade, R.D., Skurtys, O., & Osorio, F.A. (2012). Atomizing Spray Systems for Application of Edible Coatings. Comprehensive Reviews in Food Science and Food Safety, 11(3), 323-337.

Arshad, H., Ali, T. M., & Hasnain, A. (2018). Native and modified Sorghum starches as wall materials in microencapsulation of nutmeg oleoresin. International Journal of Biological Macromolecules, 114,700-709.

Azeem, B., KuShaari, K., Man, Z., & Trinh, T. H. (2018). Effect of fluidized-bed process variables on controlled-release of nitrogen and coating. Brazilian Journal of Chemical Engineering. 35(2), 587 – 604.

Alves, A.M.A., Santos, A.F., Morais, E.F.F., Pessoa, R.I. & Silva, R.S. (2020). Storage of minimally processed 'Cantaloupe' melons with edible coatings. Research, Society and Development, 9(7), 1-21, e394972796.

Augustin, M. A., & Oliver, M.C. (2014). Chapter 19 - Use of Milk Proteins for Encapsulation of Food Ingredients. Microencapsulation in the Food Industry. A Practical Implementation, 211-226.

Baudet, L., & Peres, W. (2004). Recobrimento de sementes. Seed News, 8(1), 20-23. (in Portuguese).

Benelli, l., & Oliveira, W. P. (2016). System dynamics and product quality during fluidized bed agglomeration of phytochemical compositions. Powder Technology, 300, 2–13.

Benelli, L., & Oliveira, W. P. (2019). Fluidized bed coating of inert cores with a lipid-based system loaded with a polyphenol-rich Rosmarinus officinalis extract. Food and Bioproducts Processing, 114, 216-226.

Bhardwaj, A., Alam, T., & Talwar, N. (2019). Recent advances in active packaging of agri-food products: A review. Journal of Postharvest Technology, 7(1), 33-62.

Brandt, k., Wolff, M. F. H., Salikov, V., Heinrich, S., & Schneider, G. A. (2013). A novel method for a multi-level hierarchical composite with brick-and-mortar structure. Scientific Reports, 3, 1–8.

Brito, R. C., Sousa, R. C., Béttega, R., Freire, F. B., & Freire, J. T. (2018). Analysis of the energy perfor-mance of a modified mechanically spouted bed applied in the drying of alumina and skimmed milk. Chemical Engineering and Processing - Process Intensification, 130, 1–10.

Butler, A., Hall, H., & Copnell, B. (2016). A guide to writing a qualitative systematic review protocol to enhance evidence‐based practice in nursing and health care. Worldviews on Evidence‐Based Nursing, 13(3), 241-249.

Cazon, P., Velazquez, G., Ramírez, J. A., & Vazquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148.

Celina, A., Cristina, S. S. R., & Maria, I. D. F. (2010). Water vapor absorption by hydroxy-ethyl cellulose coated seeds. Conference Proceeding - 4th International Conference, TAE 2010: Trends in Agricultural Engineering, 64 – 68.

Chen, Y., Yang, J., Mujumdar, A., & Dave, R. (2009). Fluidized bed film coating of cohesive Geldart group C powders. Powder Technology,189(3), 466-480.

Correia, A. M. R., & Mesquita, A. (2014). Mestrados e Doutoramentos. Porto: Vida Econômica Editorial, 328 p.

Costa F., Braga, R. .C, Bastos, M. S. R., Santos, D. N., & Frota, M. M. (2022). Revestimentos comestíveis à base de fécula de mandioca (manihot esculenta) em produtos vegetais: uma revisão. Research, Society and Development, 11(4), e54511427428.

Costa, P. T., Westphalen, G., Nora, D. B. F., Silva, Z. B., & Rosa, G. S. (2019). Technical and environmental assessment of coated urea production with a natural polymeric suspension in spouted bed to reduce nitrogen losses. Journal of Cleaner Production, 222, 324-334.

Costa-Silva, T.A., Carvalho, A.K.F., Souza, C.R.F., Castro, H.F., Bachmann, L., Said, S., & Oliveira, W.P. (2021). Enhancement lipase activity via immobilization onto chitosan beads used as seed particles during fluidized bed drying: Application in butyl butyrate production. Applied Catalysis A: General, 622, 118217.

Debeaufort, F., & Voilley, A. (2009). Lipid-Based Edible Films and Coatings. In: Huber, K., Embuscado, M. (eds) Edible Films and Coatings for Food Applications. Springer, New York, NY.

Dehghani, S., Hosseini, E., & Rousta. E (2022). Shelf-life extension of tomato (Solanum lycopersicum L.) using an edible coating of bitter almond gum-fish gelatin conjugates. Progress in Organic Coatings, 170, 106980.

Eichner, E., Salikov, V., Bassen, P., Heinrich, S., & Schneider, G. A. (2017). Using dilute spouting for fabrication of highly filled metal-polymer composite materials. Powder Technology, 316, 426–433.

Epstein, N., & Grace, J. R. (2011). Spouted and spout-fluid beds: Fundamentals and applications N. Epstein, J. R. Grace (Eds.), Introduction, Cambridge University Press, Cambridge.

Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., & Mei, L. H. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57-64.

Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2014). Progress report on natural fiber reinforced composites. Macromol. Macromolecular Materials and Engineering, 299, 9–26.

Fathi, M., Vinceković, M., Jurić, S., Viskić, M., RežekJambrak, A., & Donsì, F. (2021). Food-grade colloidal systems for the delivery of essential oils. Food Reviews International, 37(1), 1-45.

Feng, Z., Wu, G., Liu, C., Li, D., Jiang, B., & Zhang, Z. (2018). Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning. Food Hydrocolloids, 79, 179-188.

Forgács, A., Papp, V., Paul, G., Marchese, L., Len, A.l., Dudás, Z., Fábián, I., Gurikov, P., & Kalmár, J. (2021). Mechanism of hydration and hydration induced structural changes of calcium alginate aerogel, ACS Appl. Mater. Interfaces, 13, 2997-3010.

Freire, J. T., & Oliveira, W. P. (1992). Technological aspects in the process of particles coating, in: Freire, J. T. & Sartori, D. J. M. (Eds.), Special Topics in Drying, Federal University of São Carlos, Brazil, 1992, pp. 253–293 (in Portuguese).

Gehring, C. K., Gigliotti, J. C., Moritz, J. S., Tou, J. C., & Jaczynski, J. (2011). Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: A review. Food Chemistry, 124(2), 422–431.

Geldart, D. (1973). Types of gas fluidization. Powder Technology, 7, 285–292.

Ghoora, M. D., & Srividya, N. (2020). Effect of packaging and coating technique on postharvest quality and shelf life of Raphanus sativus L. and Hibiscus sabdariffa L. microgreens. Foods, v. 9, n. 5, 653.

Grosso, L., Asensio, C. A., Grosso, N. R., & Nepote, V. (2019). Increase of walnuts' shelf life using a walnut flour protein-based edible coating Antonella. LWT - Food Science and Technology, 118, 108712.

Hamedi, S. H., Afsahi, M. M., Nematollahi, M. H., & Akhavan, H. R. (2021). Spouted bed drying of skimmed milk: Multivariable optimization of the conditions to improve physicochemical properties of the dried milk. LWT - Food Science and Technology,146, 111448.

Hanani, Z. A. N., Roos, Y. H., & Kerry, J. P. (2014). Use and application of gelatin as potential biodegradable packaging materials for food products. International Journal of Biological Macromolecules. 71, 94-102.

Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095-1107.

Huber, K. C., & Embuscado, M. (Eds.), Applications edible films and coatings for food. Springer Science & Business Media, 2009.

Jafarzadeh, S., Jafari, S. M., Salehabadi, A., Nafchi, A. M., Uthaya, U. S., & Khalil, H. P. S. A. (2020). Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their byproducts. Trends in Food Science & Technology, 100, 262–277.

Kim, B. S., Garcia, C. V., Shin, G. H., & Kim, J. T. (2022). Development of soy protein concentrate/hemp fiber-based biocomposite foams: Effects of alkaline treatment and poly (lactic acid) coating. Industrial Crops and Products, 186, 115288.

Kim, J. T., & Netravali, A. N. (2010). Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 41, 1245–1252.

Kumar, N., Neeraj, P., & Petkoska, A. T (2021). Improved shelf life and quality of tomato (Solanum lycopersicum L.) by using chitosan-pullulan composite edible coating enriched with pomegranate peel extract. Journal of the American Chemical Society, 1, 500–510.

Kwak, H., Shin, S., Kim, J., Kim, J., Lee, D., Lee, H., Lee, E. J., & Hyun, J. (2021). Protective coating of strawberries with cellulose nanofibers. Carbohydrate Polymers, 258, 117688.

Li, H., Shi, H. B., He, Y. Q., Fei, X., & Peng, L. C. (2020). Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. International Journal of Biological Macromolecules, 164, 4104–4112.

Li, Y., Zhu, L., & Jin, Y. Fluidization characteristics of wet particles in a spouted bed using computational fluid dynamics and discrete element method. Powder Technology, 407, 117649.

Lin, C. L., & Wey, M. Y. (2004). The effect of mineral compositions of waste and operating conditions on particle agglomeration/defluidization during incineration. Fuel, 83, 2335-2343.

Link, K. C., & Schlünder, E. U. (1997). Fluidized bed spray granulation. Investigation of the coating process on a single sphere. Chemical Engineering and Processing, 36, 443-457.

Lionetto, F., & Corcione, C. E. (2021). Recent applications of biopolymers derived from fish industry waste in food packaging. Polymers, 13(14), 2337.

Liu, R., Li, L., Yin W., Xu, D., & Zang, H. (2017). Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes—a review. International Journal of Pharmaceutics, 530, 308-315.

Liu, X. J., Gan, J.Q., Zhong, W. Q., & Yu, A. B. (2020). Particle shape effects on dynamic behaviors in a spouted bed: CFD-DEM study. Powder Technology, 361, 349-362.

LiuJ, L.X., & Litster, D. (1993). Coating mass distribution from a spouted bed seed coater: Experimental and modelling studies. Powder Technology, 74(3), 259-270.

Lopes, N.E.C., Moris, V.A.S., & Taranto, O.P. (2009). Analysis of spouted bed pressure fluctuations during particle coating. Chemical Engineering and Processing: Process Intensification, 48(6), 1129-1134.

Lu, N.; Oza, S., & Ferguson, I. (2012). Effect of alkali and silane treatment on the thermal stability of hemp fibers as reinforcement in composite structures. Advanced Materials Research, v. 415-417, 666–670.

Mahdavi, S. A., Jafari, S.M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatina. International Journal of Biological Macromolecules, 85, 379-385.

Mar, J. M., da Silva, L. S., Lira, A. C., Kinupp, V. F., Yoshida, M. I., Moreira, W. P., Bruginski, e., Campos, F. R., Machado, M. B., de Souza, T. P., Campelo, P. H., de Araújo Bezerra, J., & Sanches, E. A. (2020). Bioactive compounds-rich powders: Influence of different carriers and drying techniques on the chemical stability of the Hibiscus acetosella extract. Powder Technology, 360, 383-391.

Maringgal, B., Hashim, N., Tawakkal, I. S. M. A., & Mohamed, M. T. M. (2020). Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends in Food Science and Technology, v. 96, p. 253-267. Doi: doi.org/10.1016/j.tifs.2019.12.024

Martins, G. Z., Souza, C. R. F., Shankar, T. J., & Oliveira, W. P. (2008). Effect of process variables on fluiddynamics and adhesion efficiency during spouted bed coating of hard gelatine capsules. Chemical Engineering and Processing, 47, 2238–2246.

Mathur, K.B., & Gishler, P.E. (1995). A technique for contacting gases with coarse solid particles. AIChE Journal, 1(2), 157-164.

Meiners, J. A. (2012). Fluid bed microencapsulation and other coating methods for food ingredient and nutraceutical bioactive compounds. Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, 151–176.

McClements, D. J. (2020). Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals, Biotechnology Advances, 38, 107287.

Moghadam, M., Salami, M., Mohammadian, M., & Emam-Djomeh, Z. (2021). Development and characterization of pH-sensitive and antioxidant edible films based on mung bean protein enriched with Echium amoenum anthocyanins. Journal of Food Measurement and Characterization, 15(4), 2984–2994.

Moslehi, Z., Nafchi, A. M., Moslehi, M., & Jafarzadeh, S. (2021). Aflatoxin, microbial contamination, sensory attributes, and morphological analysis of pistachio nut coated with methylcellulose. Food science & nutrition, 9(5), 2576–2584.

Mostafidi, M., Sanjabi, M. R., Shirkhan, F. & Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science and Technology, 103, 321-332.

Murrieta-Martínez, C., Soto-Valdez, H., Pacheco-Aguilar, R., Torres-Arreola, W.;Rodríguez-Felix, F., Ramírez-Wong,B., Santacruz-Ortega, H., Santos-Sauceda, I., Olibarría-Rodríguez, G., & Márquez-Ríos, E. (2019). Effect of different polyalcohols as plasticizers on the functional properties of squid protein film (Dosidicus Gigas). Coatings, 9(2), 1-12.

Nascimento L. D., Corumbá, L. G., Rocha, S. C. S., Taranto, O. P., Costa, C. M. L., & Faria, L. J. G. (2015). Fluid-dynamics evaluation in a conical spouted bed and characterization of foxtail millet seeds. Particuology, 23, 75-81.

Obiri, D. A., Matthews, L., Azahrani, M. H., Ibrahim, S. A., Galanakis, C. M., & Tahergorabi, R. (2018). Application of protein-based edible coatings for fat uptake reduction in deep-fat fried foods with an emphasis on muscle food proteins. Trends in Food Science and Technology, 80, 167-174.

Panahirad, S., Dadpour, M., Peighambardoust, H. S., Soltanzade, M., Gullon, B., Alirezalu, K., & Lorenzo, M. J. (2021). Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: a review, Trends in Food Science and Technology, 110, 663–673.

Parreidt, S.T., Markus, S., & Kajetan, M. (2018). Effect of dipping and vacuum impregnation coating techniques with alginate based coating on physical quality parameters of cantaloupe melon. Journal of Food Science, 83(4), 929-936.

Paulo Filho, M., Rocha, S.C.S., & Lisboa, A.C.L. (2006). Modeling and experimental analysis of polydispersed particles coating in spouted bed. Chemical Engineering and Processing: Process Intensification, 45(11), 965-972.

Peelman, N., Ragaert, P., Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Van Impe, F., & Devliegherea, f. (2013). Application of bioplastics for food packaging. Trends in Food Science & Technology, 32(2), 128–141.

Pereira, G. V. S., Pereira, G. V. S., Araújo, E. F., Xavier, E. M. P., Joele, M. R. S. P., & Lourenço, L. F. H. (2019a). Optimized process to produce biodegradable films with myofibrillar proteins from fish byproducts. Food Packaging and Shelf Life, 21, 100364.

Pereira, G. V. S., Pereira, G. V. S., Neve, E. M. P. X., Joele, M. R. S. P., Lima, C. L. S., & Lourenço, L. F. H. (2019b). Effect of adding fatty acids and surfactant on the functional properties of biodegradable films prepared with myofibrillar proteins from acoupa weakfish (Cynoscion acoupa). Food Science and Technology, 39(1), 287–294.

Pereira, G. V. S., Pereira, G. V. S., Neve, E. M. P. X., Rego, J. A. R., Brasil, D. S. B., Lourenço, L. F. H., & Joele, M. R. S. P. (2020). Glycerol and fatty acid influences on the rheological and technological properties of composite films from residues of Cynoscion acoupa. Food Bioscience, 38, 100773.

Pereira, G. V. S., Pereira, G. V. S., Neves, E. M. P. X., Albuquerque, G. A., Rego, J. A. R., Cardoso, D. N. P., Brasil, D. S. B., & Joele, M. R. S. P. (2021a). Effect of the Mixture of Polymers on the Rheological and Technological Properties of Composite Films of Acoupa Weakfish (Cynoscion acoupa) and Cassava Starch (Manihot esculenta C.). Food and Bioprocess Technology, 14,1199–1215.

Pereira, G. V. S., Pereira, G. V. S., Oliveira, L. C., Cardoso, D. N. P., Calado, V., & Lourenço, L. F. H. (2021b). Rheological characterization and influence of different biodegradable and edible coatings on post-harvest quality of guava. Journal of Food Processing and Preservation, 45, e15335.

Pietsch, S., Poppinga, F. O., Heinrich, S., Müller, M., Schönherr, M., & Jäger, F. K. (2019). A novel method of quantifying the coating progress in a three-dimensional prismatic spouted bed. Particuology, 42, 137-145.

Rana, A. K., Frollini, E., & Thakur, V. K. (2021). Cellulose nanocrystals: pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules, 182, 1554–1581.

Regubalan, B., Pandit, P., Maiti, S., Nadathur, G. T., & Mallick, A. (2018). Potential bio-based edible films, foams, and hydrogels for food packaging. In: Ahmed, S. (Ed.), Bio-Based Materials for Food Packaging. Springer, Singapore, Singapore, pp. 105–123.

Rocha, A. P. T., Lisboa H. M., Alsina, O. L. S., & Silva, O. S. (2018). Coating process of Phyllanthus niruri Linn granules using spouted bed. Powder Technology, 336, 85-91.

Rowe, R. C. (2008). Defects in Aqueous Film-Coated Tablets. Drugs and the Pharmaceutical Sciences, 176, 129.

Sair, S., Oushabi, A., Kammouni, A., Tanane, O., Abboud, Y., & El Bouari, A. (2018). Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites. Case Studies in Construction Materials, 8, 203–212.

Sakurai, Y., Mise, R., Kimura, S.-I., Noguchi, S., Iwao, Y., & Itai, S. (2017). Novel method for improving the water dispersibility and flowability of fine green tea powder using a fluidized bed granulator. Journal of Food Engineering, 206, 118–124.

Santana, E. B., Valente, Lorena, M. C. C., Corumbá, G., Andrade, E. L., Costa, C. M. L., & Faria, L.J.G. (2017). Fluid-dynamic behavior of flaxseed fluidized and spouted bed. Ciência Rural, 47(10), e20160644.

Savari, C., Kulah, G., Sotudeh-Gharebagh, R., Mostoufi, N., & Koksal, M. (2016). Early detection of agglomeration in conical spouted beds using recurrence plots. Industrial & Engineering Chemistry Research, 55, 7179–7190.

Saxena, A., Sharma, L., & Maity, T. (2020). Enrichment of edible coatings and films with plant extracts or essential oils for the preservation of fruits and vegetables. Biopolymer-Based Formulations, 10, 859–881.

Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science & Emerging Technologies, 39, 101-112.

Sharaf, E. A., & Tahergorabi, R. (2017). Application of a surimi-based coating to improve the quality attributes of shrimp during refrigerated storage. Foods, 6(9), 76.

Silva, C. A. M., Butzge, J. J., Nitz, M., & Taranto, O. P. (2014). Monitoring and control of coating and granulation processes in fluidized beds–a review, Adv. Powder Technology, 25, 195–210.

Simões, L. S., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos, Ó. L. (2017). Micro-and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23-45.

Sousa, R. C., Ferreira, M. C., Altzibar, H., Freire, F. B., & Freire, J. T. (2019). Drying of pasty and granular materials in mechanically and conventional spouted beds. Particuology, 42, 176-183.

Suhag, R., Kumar, N., Petkosk, A. T., & Upadhyay, A. (2020). Film formation and deposition methods of edible coating on food products: A review. Food Research International, 136, 109582.

Sutkar, V.S., Deen, N.G., & Kuipers, J.A.M. (2013). Spout fluidized beds: Recent advances in experimental and numerical studies. Chemical Engineering Science, 86, 124-136.

Szafran, G. R., WojciechLudwig, W., & Kmiec, A. (2012). New spout-fluid bed apparatus for electrostatic coating of fine particles and encapsulation. Powder Technology, 225, 52-57.

Tahergorabi R., & Jaczynski, J. (2016). Seafood proteins and human health. In: Raatz, S., & Bibus, D. (Eds.). Fish and fish oil in health and disease prevention. (pp. 323 – 330). Cambridge, MA, USA: Academic Press.

Tahergorabi R., Hosseini S.V., & Jaczynski J. (2011). Seafood proteins. In: Phillips, G. O., & Williams, P. A. (Eds.). Handbook of food proteins. (pp. 116 – 143). Cambridge, MA, USA: Elsevier.

Teunou, E., & Poncelet, D. (2002). Batch and continuous fluid bed coating — review and state of the art. Journal of Food Engineering, v. 53, p. 325-340.

Turton, R., Tardos, G. I., & Ennis, B. J. (1999). Fluidized bed coating and granulation. W.-C. Yang (Ed.), Fluidization, Solids Handling and Processing, Noyes Publications, Westwood, NJ, 331-434.

Umer, H., Nigam, H., Tamboli, A. M., & Nainar, M.S.M. (2011). Microencapsulation: process, techniques and applications. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2(2). 474-481.

Velazquez-Contreras, C., Osorio-Revilla, G., & Gallardo-Velazquez, T. Encapsulation of Orange Essential Oil in a Spout-Fluid Bed Dryer with a Draft Tube on a Bed of Inert Solids. Drying Technology, 32(14). 1718-1726.

Vieira, W. T., Nicollini, M. V. S., Silva, M. G. C., Nascimento, L. O., & Vieira, M. G. A. Natural polysaccharides and proteins applied to the development of gastroresistant multiparticulate systems for anti-inflammatory drug delivery – A systematic review. European Polymer Journal, 172, 111205.

Werner, S. R. L., Jones, J. R., Paterson, A. H. J., Archer, R. H., & Pearce, D. L. (2007). Air-suspension particle coating in the food industry: Part I — state of the art. Powder Technology, 171(1), 25-33.

Wilson, R., Dini, D., & Wachem, B. V. (2016). A numerical study exploring the effect of particle properties on the fluidization of adhesive particles. AIChE Journal., 62(5), 1467-1477.

Xiang, F., Xia, Y., Wang, Y., Wang, Y., Wu, K., & Ni, X. (2021). Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation. Food Packaging and Shelf Life, 29, 100701.

Yang, Z-S., Song, H-Y., Yang, K-M., & Chiang, P-Y. (2022). The physicochemical properties and the release of sodium caseinate/ polysaccharide gum chlorophyll multiple-layer particles by rotary side-spray fluid bed technology. Food Chemistry, 394, 133442.

Yahya, M., Rachman, A., & Hasibuan, R.. (2022). Performance analysis of solar-biomass hybrid heat pump batch-type horizontal fluidized bed dryer using multi-stage heat exchanger for paddy drying. Energy, 254(Part B), 124294.

Yu, K., Zhou, L., Xu, J., Jiang, F., Zhong, Z., Zou, L., & Liu, W. (2022). Carboxymethyl cellulose-based water barrier coating regulated postharvest quality and ROS metabolism of pakchoi (Brassica chinensis L.). Postharvest Biology and Technology, 185, 111804.

Yuan, H. B., Tang, R. C., & Yu, C. B. (2022). Microcrystalline cellulose modified by phytic acid and condensed tannins exhibits excellent flame retardant and cationic dye adsorption properties. Industrial Crops and Products, 184, 115035.

Zank, J., Kind, M., & Schlünder, E.U. (2001). Particle growth and droplet deposition in fluidised bed granulation. Powder Technology, 120, 76-81.

Zhalehrajabi, E., Lau, K. K., Shaari, K. Z. K., Zahraee, S. M., Seyedin, S. H., Azeem, B., & Shaaban, A. (2019). Effect of Biodegradable Binder Properties and Operating Conditions on Growth of Urea Particles in a Fluidized Bed Granulator. Materials, 12(14), 2320.

Zhang, C., Yang, Z., Shi, J., Zou, X., Zhai, X., Huang, X., Li, Z., Holmes, M., Daglia, M., & Xiao, J. (2021). Physical properties and bioactivities of chitosan/gelatin-based films loaded with tannic acid and its application on the preservation of fresh-cut apples. LWT - Food Science and Technology, 144, 111223.

Zhu, X.; Zhang, Q., Huang, C., Wang, Y., Yang, C., & Wei, F. (2017). Validation of surface coating with nanoparticles to improve the flowability of fine cohesive powders. Particuology, 30, 53–61.

Zink. Z., Wyrobnik, T., Prinz, T., & Schmid, M. (2016). Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review. International Journal of Molecular Sciences, 17, 1-45.

Publicado

21/12/2022

Cómo citar

PEREIRA, G. V. da S. .; LAGO, G. V. P. do .; PESSOA, M. M. da S. .; MORAES , N. S. .; SILVA, M. J. B. .; ALVES, F. S. .; QUEIROZ, R. N. .; REGO, J. de A. R. do .; BRASIL, D. do S. B. . Recubrimientos de materiales por lecho fluidizado y lecho en chorro: un estudio comparativo . Research, Society and Development, [S. l.], v. 11, n. 17, p. e92111738731, 2022. DOI: 10.33448/rsd-v11i17.38731. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38731. Acesso em: 26 dic. 2024.

Número

Sección

Revisiones