El mantenimiento de componentes como factor crítico en el procesamiento de soja y sus consecuencias

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i7.4023

Palabras clave:

Mantenimiento predictivo; Reducción de costos; Lubricación; Regresión multivariante.

Resumen

El mantenimiento se considera un factor crítico en los campos más diversos y está asociado con varias técnicas. Entre las técnicas preventivas existentes, el plan de lubricación garantiza una buena operabilidad de los componentes. El presente estudio se llevó a cabo en un negocio de procesamiento de soja ubicado en el suroeste del estado de Goiás, Brasil, en el que se identificó y propuso un plan de lubricación de dispositivos. Además, se preparó una encuesta entre el número de aplicaciones de grasa, la cantidad de grasa aplicada (g) y la temperatura (°C) de los componentes (rodamientos), y se sugirió un modelo de regresión multivariante. El estudio se realizó a partir del monitoreo de las rutinas de trabajo del sector de mantenimiento en una línea de almacenamiento de soja, con la ayuda de una cámara termográfica FLIR modelo E8. La propuesta implementada en el estudio fue capaz de reducir los costos de horas hombre y consumibles, y mejorar la confiabilidad de los equipos mediante el indicador de temperatura (°C).

Biografía del autor/a

Darlan Marques da Silva, Universidade de Rio Verde

Faculdade de Engenharia de Produção

Ivo Campos Andrade, Universidade de Rio Verde

Faculdade de Engenharia de Produção

Jordania Louse Silva Alves, Universidade Federal do Amazonas

Departamento de Engenharia de Produção

Rodrigo Francisco Borges Lourenço, Universidade de Rio Verde

Faculdade de Engenharia Mecânica

Giancarllo Ribeiro Vasconcelos, Universidade de Rio Verde

Faculdade de Engenharia Mecânica

Citas

Acomp. Safra Bras. Grãos (2018). Safra 2017/18 - Sexto levantamento, Brasília, v. 6, p. 140. Disponível em: <http://www.conab.gov.br/OlalaCMS/uploads/arquivos/18_03_09_14_46_58_grao_marco_2018.pdf>. Acesso em: 4 mai. 2020.

Azam, A, Dorgham, A, Morina, A, Neville, A & Wilson, MCT. (2019). A simple deterministic plastoelastohydrodynamic lubrication (PEHL) model in mixed lubrication. Tribology International. 131(1): 520-529. https://doi.org/10.1016/j.triboint.2018.11.011

Camden, MC, Flintsch, AM, Hickman, JS, Bryce, J, Flintsch, G & Hanowski, RJ. (2019). Prevalence of operator fatigue in winter maintenance operations. Accident Analysis & Prevention. 126(1): 47-53. https://doi.org/10.1016/j.aap.2018.01.009

Dui, H, Li, S, Xing, L & Liu, H. (2019). System performance-based joint importance analysis guided maintenance for repairable systems. Reliability Engineering & System Safety. 186(1): 162-175. https://doi.org/10.1016/j.ress.2019.02.021

Erkoyuncu, JÁ, Amo, IFD, Mura, MD, Roy, R & Dini, G. (2017). Improving efficiency of industrial maintenance with context aware adaptive authoring in augmented reality. CIRP Annals. 66(1): 465-468. https://doi.org/10.1016/j.cirp.2017.04.006

Erkoyuncu, JÁ, Khan, S., Eiroa, AL, Butler, N, Rushton, K, & Brocklebank, S. (2017). Perspectives on trading cost and availability for corrective maintenance at the equipment type level. Reliability Engineering & System Safety. 16891): 53-69. https://doi.org/10.1016/j.ress.2017.05.041

FCM, SNH. (2001). Catálogo Eletrônico Ve-001-SNH. Disponível em: <http://www.rolamentoscbf.com.br/novo/downloads/FCM-CAIXAS-SNH.pdf>. Acesso em: 05 maio 2020.

Gan, L, Xiao, K, Wang, J, Pu, W & Cao, W. (2019). A numerical method to investigate the temperature behavior of spiral bevel gears under mixed lubrication condition. Applied Thermal Engineering. 147(1): 866-875. https://doi.org/10.1016/j.applthermaleng.2018.10.125

Garcia, MS, Vilpoux, OF & Cereda, MP. (2018). Distributed electricity generation from sugarcane for agricultural irrigation: A case study from the midwest region of Brazil. Utilities Policy. 50(1): 207-210. https://doi.org/10.1016/j.jup.2017.09.010

Gunderson, MA, Boehlje, MD, Neves, MF & Sonka, ST. (2018). Agribusiness Organization and Management. Encyclopedia of Agriculture and Food Systems. pp. 51-70, 2014. https://doi.org/10.1016/B978-0-444-52512-3.00117-0

Hiremath, N & Reddy, DM. (2017). Experimental Studies to Assess Surface Wear Using Grease Degradation, Bearing Temperature and Statistical Parameter of Vibration Signals in a Roller Bearing. Materials Today: Proceedings. 4(1): 8370-8377. https://doi.org/10.1016/j.matpr.2017.07.180

Khatab, A, Diallo, C, Venkatadri, U, Liu, Z & Aghezzaf, EH. (2018). Optimization of the joint selective maintenance and repairperson assignment problem under imperfect maintenance. Computers & Industrial Engineering. 125(1): 413-422. https://doi.org/10.1016/j.cie.2018.09.012

Li, J, Chen, Y, Zhan, Y, & Huang, H. (2019). Availability modeling for periodically inspection system with different lifetime and repair-time distribution. Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2019.03.025

Lima, M, Silva, CA, Rausch, L, Gibbs, HK & Johann, JA. (2019). Demystifying sustainable soy in Brazil. Land Use Policy. 82(1): 349-352. https://doi.org/10.1016/j.landusepol.2018.12.016.

Lopes, HS, Lima, RS, Leal, F & Nelson, AC. (2017). Scenario analysis of Brazilian soybean exports via discrete event simulation applied to soybean transportation: The case of Mato Grosso State. Research in Transportation Business & Management. 25(1): 66-75. https://doi.org/10.1016/j.rtbm.2017.09.002

Ma, R, Liu, H & Chen, Z. (2018). Calculation method for the residual stability bearing capacity under axial compression of steel tube members exposed to a high temperature. Thin-Walled Structures. 132(1): 475-493. https://doi.org/10.1016/j.tws.2018.09.011

Martinod, RM, Bistorin, O, Castañeda & LF, Rezg, N. (2018). Maintenance policy optimization for multi-component systems considering degradation of components and imperfect maintenance actions. Computers & Industrial Engineering. 124(1): 100-112. https://doi.org/10.1016/j.cie.2018.07.019

Nguyen, KTP & Medjaher, K. (2019). A new dynamic predictive maintenance framework using deep learning for failure prognostic. Reliability Engineering & System Safety. 188(1): p 251-262. https://doi.org/10.1016/j.ress.2019.03.018

Odolinski, K & Boysen, HE. (2019). Railway line capacity utilization and its impact on maintenance costs. Journal of Rail Transport Planning & Management. 991): 22-33. https://doi.org/10.1016/j.jrtpm.2018.12.001

Otani, M & Machado, W. (2008). A proposta de desenvolvimento de gestão de manutenção industrial na busca da excelência ou classe mundial. Revista Gestão Industrial. Paraná, 4(2): 3-4.

Peng, S, Ding, H, Zhang, G, Tang, J & Tang, Y. (2019). New determination to loaded transmission error of the spiral bevel gear considering multiple elastic deformation evaluations under different bearing supports. Mechanism and Machine Theory. 137(1): 37-52. https://doi.org/10.1016/j.mechmachtheory.2019.03.013

Pereira, AS et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso em: 6 maio 2020. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Sauer, S. (2018). Soy expansion into the agricultural frontiers of the Brazilian Amazon: The agribusiness economy and its social and environmental conflicts. Land Use Policy. 79(1): 326-338. https://doi.org/10.1016/j.landusepol.2018.08.030

Vilarinho, S, Lopes, I & Sousa, S. (2018). Developing dashboards for SMEs to improve performance of productive equipment and processes. Journal of Industrial Information Integration. 12(1): 13-22. https://doi.org/10.1016/j.jii.2018.02.003

Wang, T. (2016). Soybean: Processing. Encyclopedia of Food Grains. 3(2): 489-496. https://doi.org/10.1016/B978-0-12-394437-5.00172-8.

Xie, Z & Liu, H. (2020). Experimental research on the interface lubrication regimes transition of water lubricated bearing. Mechanical Systems and Signal Processing. 136(1): 106522. https://doi.org/10.1016/j.ymssp.2019.106522

Publicado

10/05/2020

Cómo citar

SILVA, D. M. da; ANDRADE, I. C.; ALVES, J. L. S.; LOURENÇO, R. F. B.; VASCONCELOS, G. R. El mantenimiento de componentes como factor crítico en el procesamiento de soja y sus consecuencias. Research, Society and Development, [S. l.], v. 9, n. 7, p. e241974023, 2020. DOI: 10.33448/rsd-v9i7.4023. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4023. Acesso em: 15 ene. 2025.

Número

Sección

Ingenierías