Caracterizaciones de films sustentables para uso como empaque primario a base de polímero natural y aceite esencial de hinojo

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i3.40249

Palabras clave:

Películas comestibles; Biopolímeros; Permeabilidad al vapor de agua; Propiedades mecánicas.

Resumen

Ante la creciente preocupación por los impactos ambientales relacionados con el uso de polímeros sintéticos, se han ido incrementando los estudios encaminados a la obtención y aplicación de materiales poliméricos a partir de fuentes renovables, como el desarrollo de películas comestibles a base de polímeros naturales. Por lo tanto, este trabajo tuvo como objetivo producir películas comestibles y biodegradables utilizando una matriz de polisacáridos (goma arábiga, carboximetilcelulosa y alginato de sodio) con la adición de aceite esencial de anís (AE) para su posible uso en el empaque primario para mezclas de torta de caja. Las películas obtenidas fueron evaluadas para análisis de espesor, permeabilidad al vapor de agua (WVP), solubilidad y propiedades mecánicas. Los espesores de película fueron diferentes, ya que las condiciones de preparación no son siempre las mismas. Los valores de WVP aumentaron significativamente, en promedio un 150%, en relación a las películas control con la incorporación de emulsión de EO y principalmente de goma arábiga (GA). Con la adición de GA en las películas de AS y CMC, la tensión y elongación máximas disminuyeron, ya que se requirió menor cantidad de energía para la ruptura de la película cuando esta sufrió un esfuerzo mecánico. La solubilización de las películas, en condiciones cercanas a la preparación de una torta en la batidora, demostró ser eficiente. Con el desarrollo de esta investigación se logró alcanzar el objetivo inicial de obtener una solución filmógena satisfactoria y la formación de un paquete comestible que contiene polisacáridos y emulsión de aceite esencial de hinojo.

Citas

American Society for Testing and Materials (ASTM). (1980). Standard test method for water vapor transmission of materials. ASTM E96-80, Philadelphia, PA.

Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries. Elsevier: Bioresource Technology. 99, 4661–7.

Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, Essex. 99 (3), 384-91.

Baldwin, E. A., Hagenmaier, R., & Bai, J. (2011). Edible coatings and films to improve food quality (2a ed.) CRC Press ed. Boca Raton, FL: Taylor & Francis Group.

Belitz, H. D., & Grosch, W. (1997). Química de los alimentos. (2a ed., pp. 1087). Zaragoza: Acríbia S.A.

Bobbio, A. P., & Bobbio, F. O. (2001). Material de Embalagem: Química de Processamento de Alimentos (3a ed., Cap. 10, pp. 135-42). São Paulo: Varela.

Botre, D. A., Soares, N. F. F., Epitia, P. J. P., Sousa, S., & Renhe, I. R.T. (2010). Avaliação de filme incorporado com óleo essencial de orégano para conservação de pizza pronta. Revista Ceres, 57 (3), 283-91.

Botre, D. A., Soares, N. F. F., Geraldine, R. M., Pereira, R. M., & Fontes, E. A. F. (2007). Quality of minimally processed garlic (Allium sativum) coated with antimicrobial edible coating. Revista Ciência e Tecnologia de Alimentos. 27(1), 32-8.

Cao, G., & Wang, Y. (2011). Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (2a ed., Cap.9, pp. 509 -59). Louisiana State University, USA: World Scientific.

Carvalho, R. A. (2002). Elaboração e caracterização de filmes à base de gelatina modificada enzimaticamente e quimicamente (Tese de doutorado). Universidade Estadual de Campinas, Campinas, SP, Brasil.

Centro de tecnologia de embalagens – CETEA. (1996). Ensaios para avaliação de embalagens plásticas flexíveis. Campinas: ITAL.

Charles, A., Chang, Y. H., Ko, W. C., Sririth, K., & Huang, T. C. (2005). Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. Journal of Agricultural and Food Chemistry. 53, 2717-25.

Coma, V. (2008). Bioactive packaging Technologies for extended shelf life of meat-based products. Meat Science. 78 (1-2), 90-103.

Cuq, B., Gontard, N., Cuq, J. L., & Guilbert, S. (1996). Functional properties of myofibrilar protein-based biopackaging as effected by film thickness. Journal of Food Science. 61(3), 580-4.

Dash, K. K., Ali, N. A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules. 139, 449–58.

Dickinson, E. (2003). Hydrocolloids at interface and the influence on the properties of dispersed systems. Food Hydrocolloids. 17, 25-39.

Dror, Y., Cohen, Y., & Yerushalmi-Rozen, R. (2006). Structure of Gum Arabic in Aqueous Solution. Journal of Polymer Science: Part B: Polymer Physics. 44, 3265-71.

Fernández-Santos, J., Valls, C., Cusola, O., & Roncero, M. B. (2022). Composites of cellulose nanocrystals in combination with either cellulose nanofibril or carboxymethylcellulose as functional packaging films. International Journal of Biological Macromolecules. 211, 218-29.

Fraguas, R. M, Simão, A. A., Faria, P. V., Queiroz, E. R., Oliveira Júnior, Ê. N., & Abreu, C. M. P. (2015). Preparo e caracterização de filmes comestíveis de quitosana. Polímeros. 25, 48-53.

Galdeano, M. C. (2007). Filmes e laminados biodegradáveis de amido de aveia com diferentes plastificantes, produzidos por casting e extrusão (Tese de Doutorado). Universidade Estadual de Londrina, Londrina, PR, Brasil.

Gontard, N., & Guilbert, S. (1996). Bio-packaging: Technology and properties of edible and/or biodegradable material of agricultural origin. Boletim da Sociedade Brasileira de Ciência e Tecnologia de Alimentos. 30 (1), 3-15.

Gontard, N., Duchez, C., Cuq, J. L., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science and Technology. 29, 39-50.

Gulfraz, M., Mehmood, S., Minhas, N, Jabeen, N., & Arshad, G. (2008). Composition and antimicrobial properties of essential oil of Foeniculum vulgare. African Journal of Biotechnology. 7 (24), 4364-8.

Haq, M. A., Hasnain, A., & Azam, M. (2014). Characterization of edible gum cordia film: effects of plasticizers. LWT – Food Science and Technology. 55(1), 163-9.

Henrique, C. M. (2002). Caracterização de filmes de féculas modificadas de mandioca como subsídios para aplicação em pós-colheita de hortícolas (Tese de doutorado). Universidade do Estado de São Paulo, Botucatu, SP, Brasil.

Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oil and smoke antimicrobials. Food Microbiology. 22 (4), 273-92.

Horn, M. M. (2012). Blendas e filmes de quitosana/amido: estudo da influência da adição de polióis, oxidação do amido e razão amilose/amilopectina nas suas propriedades (Tese de doutorado). Universidade de São Paulo, São Carlos, SP, Brasil.

Li, Y., Shan, P., Yu, F., Li, H., & Peng, L. (2023). Fabrication and characterization of waste fish scale-derived gelatin/sodium alginate/carvacrol loaded ZIF-8 nanoparticles composite films with sustained antibacterial activity for active food packaging. International Journal of Biological Macromolecules. 230, 123192.

Lucas, E. F., Soares, B. G., & Monteiro, E. (2001). Caracterização de Polímeros: Determinação de Peso Molecular e Análise Térmica (1ª ed.). Rio de Janeiro: E-papers.

Maizura, M., Fazilah, A., Norziah, M. H., & Karim, A. A. (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil. Journal of Food Science – Food Chemistry and Toxicology. 72 (6), 324-30.

Mali, S., & Grossmann, M. V. E. (2003). Effects of yam starch films on storability and quality of fresh strawberries (Fragaria ananassa). Journal of Agricultural and Food Chemistry. 51 (24), 7005-11.

Mamani, H. N. C. (2009). Produção e caracterização de filmes compostos de metilcelulose, glucomanana, pectina, gelatina e lipídios (Tese de doutorado). Universidade Estadual de Campinas, Campinas, SP, Brasil.

Merle, L., Charpentier, D., Mocanu, G., & Chapelle, S. (1999). Comparison of the distribution pattern of associative carboxymethylcellulose derivatives. European Polymer Journal. 35 (1), 1-7.

Moe, S. T., Draget, K. I., Skjåk-bræk, G., & Smidsrød, O. (1995). Alginates - Food polysaccharides and their applications (2a ed., pp. 245-86). New York, Marcel Dekker: In: Stephen, A. M.

Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: Opportunities and challenges in the Green Materials World. Journal of Polymers and the Environment. 10, 19-26.

Mostafavi, F. S., & Zaeim, D. (2020). Agar-based edible films for food packaging applications - A review. International Journal of Biological Macromolecules. 159, 1165–76.

Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. C. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering. 92 (4), 448-53.

Otoni, C. G., De Moura, M. R., Aouada, F. A., Camilloto, G. P., Cruz, R. S., Lorevice, M. V., Soares, N. F. F., & Mattoso, L. H. C. (2014). Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids. 41, 188-94.

Peña, C., Caba, K. de la, Eceiza, A., Ruseckaite, R., & Mondragon, I. (2010). Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology. 101, 6836-42.

Priyadarshi, R., & Rhim, J-W. (2020). Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science and Emerging Technologies. 62, 102346.

Rocha, G. A. (2009). Produção, caracterização, estabilidade e aplicação de microesferas de Licopeno (Dissertação de Mestrado). Universidade Estadual de Campinas, Campinas, SP, Brasil.

Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishehkar, H. (2017). Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. International Journal of Biological Macromolecules. 97, 373-81.

Sakloetsakun, D., Preechagoon, D., Schnurch, A. B., & Pongjanyakul, T. (2016). Filmes complexos de polieletrólitos de goma arábica de quitosana: propriedades físico-químicas, mecânicas e mucoadesivas. Pharmaceutical Development and Technology. 20, 590 – 9.

Sarantópoulos, C. I. G. L., & Gomes, F. (2002). Embalagens plásticas flexíveis: principais polímeros e avaliação de propriedades (2ª ed.). Campinas: CETEA/ITAL.

Shan, P., Wang, K., Yu, F., Yi, L., Sun, L., & Li, H. (2023). Gelatin/sodium alginate multilayer composite film crosslinked with green tea extract for active food packaging application. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 662, 131013.

Stieven, A. C., Moreira, J. J., & Silva, C. F. (2009). Óleos essenciais de uvaia (Eugenia piryformis cambess): Avaliação das atividades antimicrobiana e antioxidante. Eclética Química. 34 (3), 7-13.

Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International. 44 (1), 282-9.

Tsai, R. Y., Chen, P. W., Kuo, T. Y., Lin, C. M., Wang, D. M., Hsien, T. Y., & Hsieh, H. J. (2014). Complexo polieletrólito de quitosana/ pectina/ goma arábica: aparência dependente do processo, análise da microestrutura e sua aplicação. Carbohydrate Polymer. 101, 752 –9.

Wihodo, M., & Moraru, C. I. (2013). Physical and chemical methods used to enhance the structure and mechanical properties of proteins films: An Review. Journal of Food Engineering. 114 (3), 292-302.

Williams, P. A., & Phillips, G. O. (2000). Gum Arabic. Handbook of hydrocolloids (156-68). Florida: Woodhead publishing.

Wong, D. W. S. (1995). Química de Los Alimentos – Mecanísmos y Teoría. Zaragoza: Acríbia, S.A.

Xu, T., Gao, C., Feng, X., Yang, Y., Shen, X., & Tang, X. (2019). Structure, physical and antioxidant properties of chitosan-gum Arabic edible films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules. 134, 230–6.

Zhao, R., Chen, J., Yu, S., Niu, R., Yang, Z., Wang, H., Cheng, H., Ye, X., Liu, D., & Wang, W. (2023). Active chitosan/gum Arabic-based emulsion films reinforced with thyme oil encapsulating blood orange anthocyanins: Improving multi-functionality. Food Hydrocolloids. 134, 108094.

Publicado

06/03/2023

Cómo citar

SANTOS, B. dos; COSTA, F. M. da .; AOUADA, F. A.; AOUADA, M. R. de M. Caracterizaciones de films sustentables para uso como empaque primario a base de polímero natural y aceite esencial de hinojo. Research, Society and Development, [S. l.], v. 12, n. 3, p. e16712340249, 2023. DOI: 10.33448/rsd-v12i3.40249. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40249. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Exactas y de la Tierra