Uso de ARIMA y SVM para pronósticos de series de tiempo del sistema eléctrico brasileño

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i3.40438

Palabras clave:

ARIMA; SVM; Aprendizaje automático; Serie de Tiempo; Sector Eléctrico Brasileño.

Resumen

El presente trabajo propone pronosticar series de tiempo del sector eléctrico brasileño. Para ello se intentó realizar predicciones para el Precio de Liquidación de las Diferencias (PLD) y la velocidad del viento para los aerogeneradores en movimiento, que transforma la energía cinética de las corrientes de aire en energía eléctrica, con base en la metodología ARIMA, basada en estadísticas computacional, y el modelo SVM, del área de inteligencia artificial, y el periodo analizado corresponde del 2001 al 2009 para el PLD y del 2004 al 2017 para el eólico. Los resultados brindan una herramienta de análisis para el mercado libre de energía, ya que demuestran la evolución de los precios y la producción eléctrica, sirviendo de ayuda para la toma de decisiones, siendo ARIMA el modelo predictivo que mejor se desempeñó en los pronósticos a corto plazo. A pesar de esto, se concluye que el SVM tiene potencial para producir resultados más asertivos para pronósticos a largo plazo, ya que el modelo tiene muchas características que pueden ser explotadas y así mejorar los pronósticos con grandes volúmenes de datos en situaciones más complejas.

Citas

Acosta, S. M. & Amoroso, A. L. (2021). Aplicação da regressão por vetores de relevância na modelagem de um processo produtivo. engenharia de produção: planejamento e controle da produção em foco-volume 1, 1(1), 37-52.

Alves, P. F., De Negri, J. A., & Cavalcante, E. J. (2022). Utilizando aprendizado de máquina para estimação do spread das instituições financeiras nos empréstimos do BNDES.

Assunção, A., de Mattos Neto, P. S., & Vasconcelos, E. (2022). Um Sistema Baseado Em Combinação de Modelos para Previsão de Velocidade do Vento. Revista de Engenharia e Pesquisa Aplicada, 7(2), 1-11.

Awan, T. M., & Aslam, F. (2020). Prediction of daily COVID-19 cases in European countries using automatic ARIMA model. Journal of public health research, 9(3), jphr-2020.

Barbosa, R. B., Ferreira, R. T., & Silva, T. M. D. (2020). Previsão de variáveis macroeconômicas brasileiras usando modelos de séries temporais de alta dimensão. Estudos Econômicos (São Paulo), 50, 67-98.

Borsato, R., & Corso, L. L. (2019). Aplicação de Inteligência Artificial e ARIMA na Previsão de Demanda no setor metal mecânico. Scientia cum Industria, 7(2), 165-176.

Brownlee, J. (2017). Introduction to time series forecasting with python: how to prepare data and develop models to predict the future. Machine Learning Mastery.

Conceição, R. M., Santos, S. R., do Nascimento, F. B., dos Santos, W. J. C., & Conte, T. N. M. (2021). Método de aprendizagem supervisionada para a identificação de rastros de cyberbullying. International Association for Development of the Information Society. IADES.

Conte, T. N. M. de S., Conte, B. N. M. de S., & Oliveira, R. C. L. (2021). Aplicação Híbrida com Redes Neurais Profundas e Algoritmo Genético para Previsão de Séries Temporais do Sistema de Energia Elétrica Brasileira. Anais Do 15. Congresso Brasileiro de Inteligência Computacional. https://doi.org/10.21528/cbic2021-104.

da Silva, F. C. C. (2021). Gestão de dados científicos. Interciência.

de Paula, D. M., Júnior, J. C. X., & Miranda, K. F. (2020). Aplicação de Séries Temporais para Previsão de Despesas de Energia Elétrica do Tribunal Regional Eleitoral do Rio Grande do Norte. Brazilian Journal of Development, 6(11), 87089-87112.

Filho, F. L. da S. (2022). Aplicação do modelo de séries temporais para previsão do número de passageiros de uma companhia aérea. https://doi.org/10.31235/osf.io/gmyaj.

Fontana, M. (2021). Modelo de predição de dados baseado em redes neurais recorrentes integrado com historiador industrial. Revista de Engenharia e Tecnologia, 13(4).

Géron, A. (2019). Mãos à Obra: Aprendizado de Máquina com Scikit-Learn & TensorFlow. Alta Books.

Isotani, S., & Bittencourt, I. I. (2015). Dados abertos conectados: em busca da web do conhecimento. Novatec Editora.

Iszczuk, A. C. D., Ventris, K. F. D., Pinto, G. B., Shirabayashi, J. V., dos Santos, M. A. R., de Souza, R. C. T., & Dal Molin Filho, R. G. (2021). Evoluções das tecnologias da indústria 4.0: dificuldades e oportunidades para as micro e pequenas empresas. Brazilian Journal of Development, 7(5), 50614-50637.

Kirchoff, D. F. (2019). Avaliação de técnicas de aprendizado de máquina para previsão de cargas de trabalho aplicadas para otimizar o provisionamento de recursos em nuvens computacionais.

Lagasse, W. (2020). Previsão do comportamento do preço de liquidação das diferenças (PLD) com ferramentas estatísticas.

Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: a survey. Philosophical Transactions of the Royal Society A, 379(2194), 20200209.

Macêdo, A. C. C. D. (2022). Comparando modelos clássicos de séries temporais e aprendizagem de máquina para previsão de demanda na indústria de bebidas (Bachelor's thesis).

Nascimento, R. de A. (2022). Estudo de métodos de previsão de séries temporais aplicados ao preço da energia elétrica no mercado de curto prazo brasileiro. Repositorio.ufmg.br. http://hdl.handle.net/1843/44150.

Neves, J. M. M. (2020). Otimização de hiperparâmetros em machine learning utilizando uma surrogate e algoritmos evolutivos (Bachelor's thesis, Universidade Tecnológica Federal do Paraná).

Paula, J. de S., Teixeira, L. L., Rodrigues, S. B., Hickmann, T., Correa, J. M., & Ribeiro, L. da S. (2022). Aplicação de técnicas de aprendizado de máquina e estatística na previsão da demanda de biocombustíveis. Revista de Gestão E Secretariado, 13(4), 2559–2572. https://doi.org/10.7769/gesec.v13i4.1488.

Sakurai, R., & Zuchi, J. D. (2018). As revoluções industriais até a indústria 4.0. Revista Interface Tecnológica, 15(2), 480-491.

Silva, J. S. S. (2020). Modelo de previsão de bolsas de sangue baseado em aprendizado de máquina.

Wang, C., Baratchi, M., Bäck, T., Hoos, H. H., Limmer, S., & Olhofer, M. (2022). Towards Time-Series Feature Engineering in Automated Machine Learning for Multi-Step-Ahead Forecasting. Engineering Proceedings, 18(1), 17.

Publicado

25/02/2023

Cómo citar

NUNES, L. R. M. .; VERAS, J. S. .; SILVA, J. P. R. .; CONTE, T. N. M. de S. .; SANTOS, W. J. C. dos .; OLIVEIRA, R. C. L. e . Uso de ARIMA y SVM para pronósticos de series de tiempo del sistema eléctrico brasileño. Research, Society and Development, [S. l.], v. 12, n. 3, p. e8112340438, 2023. DOI: 10.33448/rsd-v12i3.40438. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40438. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías