Síntesis, caracterización y evaluación de derivados del cardanol como agentes repelentes/plaguicidas de Liriomyza sativae (Diptera: Agromyzidae) y Bemisia tabaci (Hemiptera: Aleyrodidae) en plantas de melón
DOI:
https://doi.org/10.33448/rsd-v12i3.40454Palabras clave:
Efecto disuasorio; Efecto insecticida; Repelencia; Mosca blanca; Mosca minadora de hojas.Resumen
Los derivados del cardanol hidrogenado se evaluaron como agentes insecticidas/repelentes potencialmente activos contra plagas de insectos como Liriomyza sativae (Diptera: Agromyzidae) y Bemisia tabaci biotipo B (Hemiptera: Aleyrodidae). Se realizó benzoilación, acetilación y metilación sobre el anillo aromático de cardanol hidrogenado para sintetizar principios activos con potencial acción insecticida. Los espectros de resonancia magnética nuclear (13C y 1H RMN) e infrarrojo (IR) propusieron la elucidación química de los productos. Se realizó la producción de plántulas de melón y cada uno de los productos sintetizados, 3-pentadecilfenol benzoilado, 3-pentadecilfenol acetilado y 3-pentadecilfenol metilado, se aplicaron a las plántulas mediante un rociador de vidrio. Se realizaron evaluaciones de fitotoxicidad, observándose que todas las plantas presentaron hojas quemadas a excepción de la concentración 1% en la cual las hojas mantuvieron un aspecto saludable. La eficacia insecticida así como los efectos repelente y disuasorio se evaluaron mediante un diseño completamente al azar (DIC) y un diseño de bloques completos al azar (DBCA) con seis tratamientos, cinco y cuatro repeticiones respectivamente. Los compuestos derivados del cardanol no presentaron actividad insecticida en DBCA para L. sativae; sin embargo, tuvieron un efecto notable en el índice de oviposición (IPO). Solo se encontró efecto ovicida y mortalidad ninfal para B. tabaci por 3-pentadecilfenol metilado y Mospilan® en cuanto a los efectos de disuasión y oviposición en los dos bioensayos evaluados y el tratamiento con 3-pentadecilo metilado mostró un comportamiento similar al efecto de Abamectin® en la prueba de confinamiento, con 53.5% - 65.4% de repelencia de adultos, dato importante para resaltar que los productos sintetizados a partir de cardanol son prometedores en la prevención del ataque de plagas. tales como L. sativae y B. tabaci.
Citas
Alcântara, D. B., Fernandes, T. S. M., Nascimento, H. O., Lopes, A. F., Menezes, M. G. G., Lima, A. C. A., Carvalho, T. v., Grinberg, P., Milhome, M. A. L., Oliveira, A. H. B., Becker, H., Zocolo, G. J., & Nascimento, R. F. (2019). Diagnostic detection systems and QuEChERS methods for multiclass pesticide analyses in different types of fruits: An overview from the last decade. Food Chemistry, 298, 124958. https://doi.org/10.1016/J.FOODCHEM.2019.124958
Arab, A., & Bento, J. M. S. (2006). Plant Volatiles: New Perspectives for Research in Brazil.
Araujo, E. L., Costa, E. M., Filho, E. R. M., Nogueira, C. H. F., & Santos, M. R. D. (2012). Efeito de inseticidas sobre a mosca minadora ( Diptera : Agromyzidae ), quando aplicados durante a fase de ovo Effect of insecticides on leafminer ( Diptera : Agromyzidae ) when applied during the phase of egg. 18–22.
Baldin, E. L., da Silva, J. P. G., & Pannuti, L. E. R. (2012). Resistance of melon cultivars to Bemisia tabaci biotype B. Horticultura Brasileira, 30(4), 600–606. https://doi.org/10.1590/S0102-05362012000400007
Birchfield, A. S., & McIntosh, C. A. (2020). Metabolic engineering and synthetic biology of plant natural products – A minireview. Current Plant Biology, 24, 100163. https://doi.org/10.1016/J.CPB.2020.100163
Capinera, J. L. (2020). Order Hemiptera—Bugs. Handbook of Vegetable Pests, 259–382. https://doi.org/10.1016/B978-0-12-814488-6.00008-X
Carrière, Y., & Onstad, D. W. (2023). The role of landscapes in insect resistance management. Insect Resistance Management, 329–379. https://doi.org/10.1016/B978-0-12-823787-8.00006-4
Celin, E. F., Oliveira, F. I. C., Dias-Pini, N. S., Nunes, G. H. S., & Aragão, F. A. S. (2017). New sources of resistance to leafminers (Liriomyza sativae) in melon (Cucumis melo L.) germplasm. Genetics and Molecular Research, 16(2). https://doi.org/10.4238/gmr16029561
Chang, Y. W., Wang, Y. C., Yan, Y. Q., Wu, C. D., Xie, H. F., Gong, W. R., & Du, Y. Z. (2022). Insect hormones affect the toxicity of the insecticidal growth regulator cyromazine in Liriomyza trifolii (Diptera: Agromyzidae). Pesticide Biochemistry and Physiology, 188, 105263. https://doi.org/10.1016/J.PESTBP.2022.105263
Cock, A. de, Ishaaya, I., van Veire, M. de, & DECHEELEl EconEntomol, D. J. (1995). Response of Buprofezin-Susceptible and-Resistant Strains of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) to Pyriproxyfen and Diafenthiuron. Journal of Economy Entomology, 88(4), 763–767. http://jee.oxfordjournals.org/
Carvalho, G. H. F., de Andrade, M. A., de Araújo, C. N., Santos, M. L., de Castro, N. A., Charneau, S., Monnerat, R., de Santana, J. M., & Bastos, I. M. D. (2019). Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors. Environmental Science and Pollution Research International, 26(6), 5514–5523. https://doi.org/10.1007/s11356-018-3905-y
Denholm, I., & Devine, G. (2013). Insecticide Resistance. Encyclopedia of Biodiversity: Second Edition, 298–307. https://doi.org/10.1016/B978-0-12-384719-5.00104-0
Devos, Y., Oberkofler, L., & Glandorf, D. C. M. (2022). Genetically modified plants and food/feed: Risk assessment considerations. Reference Module in Biomedical Sciences. https://doi.org/10.1016/B978-0-12-824315-2.00012-9
Fenemore, P. G. (1980). Oviposition of potato tuber moth, phthorimaea operculella zell. (lepidoptera: Gelechiidae); identification of host-plant factors influencing oviposition response. New Zealand Journal of Zoology, 7(3), 435–439. https://doi.org/10.1080/03014223.1980.10423798
Ferguson, J. S. (2004). Development and Stability of Insecticide Resistance in the Leafminer <I>Liriomyza trifolii</I> (Diptera: Agromyzidae) to Cyromazine, Abamectin, and Spinosad. Journal of Economic Entomology, 97(1), 112–119. https://doi.org/10.1603/0022-0493-97.1.112
Khursheed, A., Rather, M. A., Jain, V., Wani, A. R., Rasool, S., Nazir, R., Malik, N. A., & Majid, S. A. (2022). Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microbial Pathogenesis, 173, 105854. https://doi.org/10.1016/J.MICPATH.2022.105854
Klassen, D., Lennox, M. D., Dumont, M. J., Chouinard, G., & Tavares, J. R. (2023). Dispensers for pheromonal pest control. Journal of Environmental Management, 325, 116590. https://doi.org/10.1016/J.JENVMAN.2022.116590
Kubo, I., Nihei, K.-I., & Tsujimoto, K. (2003). Antibacterial action of anacardic acids against methicillin resistant Staphylococcus aureus (MRSA). Journal of Agricultural and Food Chemistry, 51(26), 7624–7628. https://doi.org/10.1021/jf034674f
Kubo, J., Lee, J. R., & Kubo, I. (1999). Anti-Helicobacter pylori agents from the cashew apple. Journal of Agricultural and Food Chemistry, 47(2), 533–537. https://doi.org/10.1021/jf9808980
Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41. https://doi.org/10.1016/J.JIP.2015.07.009
Lamichhane, J. R., Aubertot, J. N., Begg, G., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Hansen, J. G., Hovmøller, M. S., Jensen, J. E., Jørgensen, L. N., Kiss, J., Kudsk, P., Moonen, A. C., Rasplus, J. Y., Sattin, M., Streito, J. C., & Messéan, A. (2016). Networking of integrated pest management: A powerful approach to address common challenges in agriculture. Crop Protection, 89, 139–151. https://doi.org/10.1016/J.CROPRO.2016.07.011
Lemos, L. J. U., Costa-Lima, T. C. da, Godoy, W. A. C., Barros, R. V., & Barros, R. (2021). Evidence for coabundance of leafminer flies and whiteflies in melon crops. Bragantia, 80. https://doi.org/10.1590/1678-4499.20190459
Lim, M.-Y., Choi, Y.-S., Shin, H., Kim, K., Myung Shin, D., & Lee, J.-C. (2018). Cross-Linked Graphene Oxide Membrane Functionalized with Self-Cross-Linkable and Bactericidal Cardanol for Oil/Water Separation. ACS Applied Nano Materials, 1(6), 2600–2608. https://doi.org/10.1021/acsanm.8b00241
Liu, Z., Chen, J., Knothe, G., Nie, X., & Jiang, J. (2016). Synthesis of Epoxidized Cardanol and Its Antioxidative Properties for Vegetable Oils and Biodiesel. ACS Sustainable Chemistry & Engineering, 4(3), 901–906. https://doi.org/10.1021/acssuschemeng.5b00991
Lomonaco, D., Pinheiro Santiago, G. M., Ferreira, Y. S., Campos Arriaga, Â. M., Mazzetto, S. E., Mele, G., & Vasapollo, G. (2009). Study of technical CNSL and its main components as new green larvicides. Green Chem., 11(1), 31–33. https://doi.org/10.1039/B811504D
Mendes Hacke, A. C., Lima, D., & Kuss, S. (2022). Green synthesis of electroactive nanomaterials by using plant-derived natural products. Journal of Electroanalytical Chemistry, 922, 116786. https://doi.org/10.1016/J.JELECHEM.2022.116786
Naegeli, H. (2023). Safety assessment of food and feed derived from genetically modified plants. Present Knowledge in Food Safety, 938–958. https://doi.org/10.1016/B978-0-12-819470-6.00033-0
Nagabhushana, K. S., Umamaheshwari, S., Tocoli, F. E., Prabhu, S. K., Green, I. R., & Ramadoss, C. S. (2002). Inhibition of soybean and potato lipoxygenases by bhilawanols from bhilawan (Semecarpus anacardium) nut shell liquid and some synthetic salicylic acid analogues. Journal of Enzyme Inhibition and Medicinal Chemistry, 17(4), 255–259. https://doi.org/10.1080/1475636021000006243
Nunes, G. H. de S., Medeiros, A. C., Araujo, E. L., Nogueira, C. H. F., & Sombra, K. D. da S. (2013). Resistência de acessos de meloeiro à mosca-minadora Liriomyza spp. (Diptera: Agromyzidae). Revista Brasileira de Fruticultura, 35(3), 746–754. https://doi.org/10.1590/S0100-29452013000300011
Oliveira, F. I. C. de, Fiege, L. B. C., Celin, E. F., Innecco, R., Nunes, G. H. S., & Aragão, F. A. S. (2017). Screening of melon genotypes for resistance to vegetable leafminer and your phenotypic correlations with colorimetry. Anais Da Academia Brasileira de Ciências, 89(2), 1155–1166. https://doi.org/10.1590/0001-3765201720150368
Padilha, A. C., Piovesan, B., Morais, M. C., Arioli, C. J., Zotti, M. J., Grützmacher, A. D., & Botton, M. (2019). Toxicity, attraction, and repellency of toxic baits to stingless bees Plebeia emerina (Friese) and Tetragonisca fiebrigi (Schwarz) (Hymenoptera: Apidae: Meliponini). Ecotoxicology and Environmental Safety, 183, 109490. https://doi.org/10.1016/J.ECOENV.2019.109490
Pirzada, T., de Farias, B. v., Mathew, R., Guenther, R. H., Byrd, M. v., Sit, T. L., Pal, L., Opperman, C. H., & Khan, S. A. (2020). Recent advances in biodegradable matrices for active ingredient release in crop protection: Towards attaining sustainability in agriculture. Current Opinion in Colloid & Interface Science, 48, 121–136. https://doi.org/10.1016/J.COCIS.2020.05.002
Santos, K. P. E. dos, Ferreira Silva, I., Mano-Sousa, B. J., Duarte-Almeida, J. M., Castro, W. V. de, Azambuja Ribeiro, R. I. M. de, Santos, H. B., & Thomé, R. G. (2023). Abamectin promotes behavior changes and liver injury in zebrafish. Chemosphere, 311, 136941. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136941
Santos, S. R. L., Silva, V. B., Melo, M. A., Barbosa, J. D. F., Santos, R. L. C., de Sousa, D. P., & Cavalcanti, S. C. H. (2010). Toxic Effects on and Structure-Toxicity Relationships of Phenylpropanoids, Terpenes, and Related Compounds in Aedes aegypti Larvae. Vector-Borne and Zoonotic Diseases, 10(10), 1049–1054. https://doi.org/10.1089/vbz.2009.0158
Santos, T. de L., Nunes, A. B. A., Giongo, V., Barros, V. da S., & Figueirêdo, M. C. B. de. (2018). Cleaner fruit production with green manure: The case of Brazilian melons. Journal of Cleaner Production, 181, 260–270. https://doi.org/10.1016/J.JCLEPRO.2017.12.266
Silva, F. S., Lopes, M. C., Farias, E. S., Sarmento, R. A., Pereira, P. S., & Picanço, M. C. (2020). Standardized sampling plan for common blossom thrips management in melon fields from north Brazil. Crop Protection, 134, 105179. https://doi.org/10.1016/J.CROPRO.2020.105179
Silva, J. P. G. F., Zaché, R. R. C., Baldin, E. L. L., Oliveira, F. B., & Valtapeli, E. R. (2012). Repelência e deterrência na oviposição de Bemisia tabaci biótipo B pelo uso de extratos vegetais em Cucurbita pepo L. Revista Brasileira de Plantas Medicinais, 14(1), 76–83. https://doi.org/10.1590/S1516-05722012000100011
Singh, A., Dhiman, N., Kar, A. K., Singh, D., Purohit, M. P., Ghosh, D., & Patnaik, S. (2020). Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of Hazardous Materials, 385, 121525. https://doi.org/10.1016/J.JHAZMAT.2019.121525
Somers, J., Nguyen, J., Lumb, C., Batterham, P., & Perry, T. (2015). In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad. Insect Biochemistry and Molecular Biology, 64, 116–127. https://doi.org/10.1016/J.IBMB.2015.01.018
Ware, G. W., & Whitacre, D. M. (2004). AN INTRODUCTION TO ( 3rd edition ). The Pesticide Book. Meister Pub. Willoughby, Ohio.
Wei, Q.-B., Lei, Z.-R., Nauen, R., Cai, D.-C., & Gao, Y.-L. (2015). Abamectin resistance in strains of vegetable leafminer, Liriomyza sativae (Diptera: Agromyzidae) is linked to elevated glutathione S-transferase activity. Insect Science, 22(2), 243–250. https://doi.org/10.1111/1744-7917.12080
Zhang, Y., Tian, T., Zhang, K., Zhang, Y., Wu, Q., Xie, W., Guo, Z., & Wang, S. (2022). Lack of fitness cost and inheritance of resistance to abamectin based on the establishment of a near-isogenic strain of Tetranychus urticae. Journal of Integrative Agriculture. https://doi.org/10.1016/J.JIA.2022.10.012
Zhu, X., Liu, X., Liu, T., Wang, Y., Ahmed, N., Li, Z., & Jiang, H. (2021). Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. Plant Communications, 2(5), 100229. https://doi.org/10.1016/J.XPLC.2021.100229
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Maria Roniele Félix Oliveira; Nívia da Silva Dias-Pini; Elaine Facco Celin; Katiany do Vale Abreu; Nádylla Régis Xavier de Oliveira; Airis Maria Araújo Melo; Marília de Albuquerque Oliveira; Atanu Biswas; Huai Nan Cheng; Carlucio Roberto Alves
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.