Prototipo de sistema de sensores para analizar la fragilidad en personas mayores: un estudio piloto

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i3.40649

Palabras clave:

Evaluación de la tecnología biomédica; Anciano frágil; Periféricos de computador; Equipo para diagnóstico.

Resumen

Introducción: El síndrome de fragilidad se caracteriza por la reducción de las reservas físicas y cognitivas, lo que hace que las personas mayores sean vulnerables a eventos adversos. Este estudio describe un prototipo de sistema sensor desarrollado para evaluar la fragilidad a través de parámetros fisiológicos y marcadores de fragilidad. Métodos: Se desarrolló y probó un prototipo que combinaba cuatro sensores en red y un paquete de software en cuatro residentes de la tercera edad de ambos sexos, de 60 años o más, que no presentaban síndrome locomotor ni deterioro cognitivo severo. Tres de ellos eran frágiles y podían caminar sin ayuda (P1), apoyándose en la pared (P2) o con un bastón (P3), y un participante no frágil (P4) caminaba sin ayuda. Resultados: En cuanto a la aceleración media, P1 y P4 presentaron los valores más bajos y más altos, respectivamente, en el eje anteroposterior; P4 tuvo el valor más bajo en el eje medio-lateral; y P3 presentó el mayor valor en el eje vertical. Todos los participantes mostraron una velocidad angular de balanceo similar; P4 presentó la menor velocidad angular de cabeceo; y P1 y P4 tenían la velocidad angular media de guiñada más alta. Un participante sarcopénico (P2) exhibió la menor fuerza de contracción muscular. Conclusión: El dispositivo tiene potencial para detectar marcadores de fragilidad para resultados adversos en personas mayores, como inestabilidad postural y mayor riesgo de caídas.

Biografía del autor/a

Alexandre Carlos Brandão Ramos, Universidade Federal de Itajubá

Universidade Federal de Itajuba (UNIFEI)

Citas

ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. (2002). ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med, 166 (1), 111-117. https://doi.org/10.1164/ajrccm.166.1.at1102

Bian, C., Ye, B., Chu, C. H., McGilton, K. S. & Mihailidis, A. (2020). Technology for home-based frailty assessment and prediction: A systematic review. Gerontechnology, 19 (3), 1-13. https://doi.org/10.4017/gt.2020.19.003.06

Bian. C., Ye, B. & Mihailidis, A. (2022). The Development and Concurrent Validity of a Multi-Sensor-Based Frailty Toolkit for In-Home Frailty Assessment. Sensors, 22, 3532. https://doi.org/10.3390/s22093532

Boxer, R. S., Wang, Z., Walsh, S. J., Hager, D. & Kenny, A. M. (2008). The utility of the 6-minute walk test as a measure of frailty in older adults with heart failure. Am J Geriatr Cardiol, 17 (1), 7-12. https://doi.org/10.1111/j.1076-7460.2007.06457.x

Chang, K. V., Hsu, T. H., Wu, W. T., Huang, K. C. & Han D. S. (2016). Association between sarcopenia and cognitive impairment: a systematic review and meta-analysis. J Am Med Dir Assoc, 17 (12), 1164.e7-1164.e15. https://doi.org/10.1016/j.jamda.2016.09.013

Chaves, P. H., Varadhan, R., Lipsitz, L. A. & et al. (2008). Physiological complexity underlying heart rate dynamics and frailty status in community-dwelling older women. J Am Geriatr Soc, 56 (9), 1698-1703. https://doi.org/10.1111/j.1532-5415.2008.01858.x

Cruz-Jentoft, A. J, Bahat, G., Bauer, J. & et al. (2019). Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 48 (1), 16-31. https://doi.org/10.1093/ageing/afy169

Da Mata, F. A., Pereira, P. P., Andrade, K. R., Figueiredo, A. C., Silva, M.T. & Pereira, M. G. (2016). Prevalence of frailty in Latin America and the Caribbean: a systematic review and meta-analysis. PLoS ONE, 11 (8), e0160019. https://doi.org/10.1371/journal.pone.0160019

Fleg, J. L., Morrell, C. H., Bos, A. G. & et al. (2005). Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation, 112 (5), 674-682. https://doi.org/10.1161/CIRCULATIONAHA.105.545459

Fried, L. P., Tangen, C. M., Walston, J., & et al. (2001). Frailty in older adults: evidence for a phenotype. J GerontolA Biol Sci Med Sci, 56 (3), M146-M156. https://doi.org/10.1093/gerona/56.3.m146

Greene, B. R., Doheny, E. P., O’Halloran, A. & Kenny, R. A. (2014). Frailty status can be accurately assessed using inertial sensors and the TUG test. Age Ageing, 43 (3), 406-411. https://doi.org/10.1093/ageing/aft176

Hoogendijk, E. O., Afilalo, J., Ensrud, K. E., Kowal, P., Onder, G. & Fried, L.P. (2019). Frailty: Implications for Clinical Practice and Public Health. Lancet, 394, 1365-1375. https://doi.org/10.1016/S0140-6736(19)31786-6.

Ijaz, N., Buta, B., Xue, Q. & et al. (2022). Interventions for Frailty Among Older Adults With Cardiovascular Disease. J Am Coll Cardiol, 79 (5), 482–503.https://doi.org/10.1016/j.jacc.2021.11.029

Iwamura, M. & Kanauchi, M. (2017). A cross-sectional study of the association between dynapenia and higher-level functional capacity in daily living in community-dwelling older adults in Japan. BMC Geriatr, 17 (1), 1. https://doi.org/10.1186/s12877-016-0400-5

Kawakami, R., Murakami, H., Sanada, K. & et al. (2015). Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr Gerontol Int, 15 (8), 969-976. https://doi.org/10.1111/ggi.12377

Landi, F., Onder, G., Russo, A. & et al. (2014). Calf circumference, frailty and physical performance among older adults living in the community. Clin Nutr,33 (3), 539-544. https://doi.org/10.1016/j.clnu.2013.07.013

Maresova, P., Javanmardi, E., Barakovic, S., Barakovic Husic, J., Tomsone, S., Krejcar, O. & Kuca, K. (2019). Consequences of Chronic Diseases and Other Limitations Associated with Old Age - A Scoping Review. BMC Public Health, 19, 1431. https://doi.org/10.1186/s12889-019-7762-5.

McDermid, R. C., Stelfox, H. T. &, Bagshaw, S. M. (2011). Frailty in the critically ill: a novel concept. Crit Care, 15 (1), 301. https://doi.org/10.1186/cc9297

Mello, A. C., Engstrom, E. M. & Alves, L. C. (2014). Health-related and socio-demographic factors associated with frailty in the elderly: a systematic literature review. Cad Saude Publica, 30 (6), 1-25. https://doi.org/10.1590/0102-311x00148213

Mello, J. L., Souza, D. M., Tamaki, C. M., Galhardo, V. A., Veiga, D. F. & Ramos, A. C. (2018). Application of an effective methodology for analysis of fragility and its components in the elderly. In: Latifi S, ed. Information Technology: New Generations - Advances in Intelligent Systems and Computing. New York: Springer, 735-739.

Moraes, E. M. & Moraes, F. L. (2010). Incapacidade Cognitiva: Abordagem Diagnóstica e Terapêutica das Demências no Idoso. Belo Horizonte: Folium.

Nunes, D. P., Duarte, Y. A., Santos, J.L. & Lebrão ML. (2015). Screening for frailty in older adults using a self-reported instrument. Rev Saude Publica. 49 (2), 1-9. https://doi.org/10.1590/s0034-8910.2015049005516

Podsiadlo, D. & Richardson, S. (1991). The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc, 39 (2), 142-148. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x

Rolland, Y., Lauwers-Cances, V., Cournot. M. & et al. (2003). Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr Soc, 51 (8), 1120-1124. https://doi.org/10.1046/j.1532-5415.2003.51362.x

Savva, G. M., Donoghue, O. A., Horgan, F., O’Regan, C., Cronin, H. & Kenny RA. (2013). Using timed up-and-go to identify frail members of the older population. J Gerontol A Biol Sci Med Sci, 68 (4), 441-446. https://doi.org/10.1093/gerona/gls190

Schoon. Y., Bongers. K., Van Kempen, J., Melis, R. & Olde Rikkert, M. (2014). Gait speed as a test for monitoring frailty in community-dwelling older people has the highest diagnostic value compared to step length and chair rise time. Eur J Phys Rehabil Med, 50 (6), 693-701. https://www.minervamedica.it/en/journals/europa-medicophysica/article.php?cod=R33Y2014N06A0693.

Singh, D., Vinod, K., Saxena, S. C. & Deepak, K. K. (2006). Spectral evaluation of aging effects on blood pressure and heart rate variations in healthy subjects. J Med Eng Technol, 30 (3), 145-150. https://doi.org/10.1080/03091900500442855

Studenski, S., Perera, S., Patel, K. & et al. (2011). Gait speed and survival in older adults. JAMA, 305 (1), 50-58. https://doi.org/10.1001/jama.2010.1923

Vavasour, G., Giggins, O. M., Doyle, J. & et al. (2021). How wearable sensors have been utilised to evaluate frailty in older adults: a systematic review. J NeuroEngineering Rehabil, 18, 112. https://doi.org/10.1186/s12984-021-00909-0

Zampogna, A., Mileti, I., Palermo, E., Celletti, C., Paoloni, M., Manoni, A. & et al. (2020). Fifteen years of wireless sensors for balance assessment in neurological disorders. Sensors (Switzerland), 20

Descargas

Publicado

05/03/2023

Cómo citar

MELLO, J. L. de C. .; VEIGA, D. F. .; GALHARDO, V. Ângelo C. .; FERREIRA, L. M. .; TAMAKI, C. M. .; RAMOS, A. C. B. .; SOUZA, D. M. S. T. de . Prototipo de sistema de sensores para analizar la fragilidad en personas mayores: un estudio piloto. Research, Society and Development, [S. l.], v. 12, n. 3, p. e15712340649, 2023. DOI: 10.33448/rsd-v12i3.40649. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40649. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud