Evaluación de dos modelos experimentales de trombosis venosa profunda: estasis venosa y lesión endotelial
DOI:
https://doi.org/10.33448/rsd-v12i4.40975Palabras clave:
Trombosis venosa; Modelos de animales; Cloruro férrico; Ligadura.Resumen
La trombosis venosa profunda es una importante causa de morbimortalidad en el mundo, especialmente en el ámbito hospitalario, justificando su tratamiento y también profilaxis cuando sea necesario. Los métodos de inducción de trombosis venosa profunda en animales son fundamentales para el estudio de la fisiopatología de la enfermedad, así como para el ensayo de fármacos antitrombóticos. Los objetivos del estudio fueron evaluar y comparar dos métodos de inducción de trombosis venosa profunda en ratas: el modelo de estasis venosa, ampliamente descrito en la literatura, y el modelo de lesión endotelial, con pocos estudios, principalmente en ratas. Se utilizaron ratas Wistar macho para inducir trombosis venosa profunda. Para la estasis, se disecó y ligó la vena cava inferior durante 3 horas, después de lo cual se extrajo el segmento con la vena que contenía el trombo. Para el modelo de lesión endotelial, se aplicó un trozo de papel de filtro empapado en FeCl3 durante 1 minuto y se evaluó el segmento después de 1 hora. En ambos modelos se evaluó el peso húmedo y el área de oclusión. El peso húmedo se obtuvo comparando los métodos de lesión endotelial y estasis respectivamente: 17,7 mg (±3,0 mg) vs. 2,34 mg (±1,8 mg) con P<0,001. Para el área de oclusión, comparando los métodos de lesión endotelial y estasis respectivamente: 85,11% (±9,67%) vs. 40,83% (±33,14%), con P<0,05. En todas las variables, el método de lesión endotelial tuvo mejores resultados que el método de estasis venosa, demostrando ser más reproducible.
Citas
Albadawi, H., Witting, A. A., Pershad, Y., Wallace, A., Fleck, A. R., Hoang, P., Khademhosseini, A., & Oklu, R. (2017). Animal models of venous thrombosis. Cardiovascular diagnosis and therapy, 7 (Suppl 3), S197–S206. https://doi.org/10.21037/cdt.2017.08.10
Alessio, A. M., Beltrame, M. P., Nascimento, M. C., Vicente, C. P., de Godoy, J. A., Silva, J. C., Bittar, L. F., Lorand-Metze, I., de Paula, E. V., & Annichino-Bizzacchi, J. M. (2013). Circulating progenitor and mature endothelial cells in deep vein thrombosis. International journal of medical sciences, 10(12), 1746–1754. https://doi.org/10.7150/ijms.6887
Barr, J. D., Chauhan, A. K., Schaeffer, G. V., Hansen, J. K., & Motto, D. G. (2013). Red blood cells mediate the onset of thrombosis in the ferric chloride murine model. Blood, 121(18), 3733–3741. https://doi.org/10.1182/blood-2012-11-468983
Brill, A., Fuchs, T. A., Chauhan, A. K., Yang, J. J., De Meyer, S. F., Köllnberger, M., Wakefield, T. W., Lämmle, B., Massberg, S., & Wagner, D. D. (2011). von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood, 117(4), 1400–1407. https://doi.org/10.1182/blood-2010-05-287623.
Ciciliano, J. C., Sakurai, Y., Myers, D. R., Fay, M. E., Hechler, B., Meeks, S., Li, R., Dixon, J. B., Lyon, L. A., Gachet, C., & Lam, W. A. (2015). Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood, 126(6), 817–824. https://doi.org/10.1182/blood-2015-02-628594
Cohoon, K. P., Leibson, C. L., Ransom, J. E., Ashrani, A. A., Petterson, T. M., Long, K. H., Bailey, K. R., & Heit, J. A. (2015). Costs of venous thromboembolism associated with hospitalization for medical illness. The American journal of managed care, 21(4), e255–e263.
Couture, L., Richer, L. P., Cadieux, C., Thomson, C. M., & Hossain, S. M. (2011). An optimized method to assess in vivo efficacy of antithrombotic drugs using optical coherence tomography and a modified Doppler flow system. Journal of pharmacological and toxicological methods, 64(3), 264–268. https://doi.org/10.1016/j.vascn.2011.09.001
Cui, G., Shan, L., Guo, L., Keung Chu, I., Li, G., Quan, Q., Zhao, Y., Meng Chong, C., Zhang, Z., Yu, P., Hoi, M. P., Sun, Y., Wang, Y., & Lee, S. M. (2015). Corrigendum: Novel anti-thrombotic agent for modulation of protein disulfide isomerase family member ERp57 for prophylactic therapy. Scientific reports, 5, 13509. https://doi.org/10.1038/srep13509
Dai, B., Li, L., Li, Q., Song, X., Chen, D., Dai, J., Yao, Y., Yan, W., Teng, H., Yang, F., Xu, Z., & Jiang, Q. (2017). Novel microspheres reduce the formation of deep venous thrombosis and repair the vascular wall in a rat model. Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis, 28(5), 398–406. https://doi.org/10.1097/MBC.0000000000000629
Diaz, J. A., Obi, A. T., Myers, D. D., Jr, Wrobleski, S. K., Henke, P. K., Mackman, N., & Wakefield, T. W. (2012). Critical review of mouse models of venous thrombosis. Arteriosclerosis, thrombosis, and vascular biology, 32(3), 556–562. https://doi.org/10.1161/ATVBAHA.111.244608.
Diaz, J. A., Saha, P., Cooley, B., Palmer, O. R., Grover, S. P., Mackman, N., Wakefield, T. W., Henke, P. K., Smith, A., & Lal, B. K. (2019). Choosing a Mouse Model of Venous Thrombosis. Arteriosclerosis, thrombosis, and vascular biology, 39(3), 311–318. https://doi.org/10.1161/ATVBAHA.118.311818
Fernandez, M. M., Hogue, S., Preblick, R., & Kwong, W. J. (2015). Review of the cost of venous thromboembolism. Clinic Economics and outcomes research: CEOR, 7, 451–462. https://doi.org/10.2147/CEOR.S85635.
Frisbie J. H. (2005). An animal model for venous thrombosis and spontaneous pulmonary embolism. Spinal cord, 43(11), 635–639. https://doi.org/10.1038/sj.sc.3101770.
Gustafsson, D., Nyström, J., Carlsson, S., Bredberg, U., Eriksson, U., Gyzander, E., Elg, M., Antonsson, T., Hoffmann, K., Ungell, A., Sörensen, H., Någård, S., Abrahamsson, A., & Bylund, R. (2001). The direct thrombin inhibitor melagatran and its oral prodrug H 376/95: intestinal absorption properties, biochemical and pharmacodynamic effects. Thrombosis research, 101(3), 171–181. https://doi.org/10.1016/s0049-3848(00)00399-6.
Gong, G., Qin, Y., & Huang, W. (2011). Anti-thrombosis effect of diosgenin extract from Dioscorea zingiberensis C.H. Wright in vitro and in vivo. Phytomedicine: international journal of phytotherapy and phytopharmacology, 18(6), 458–463. https://doi.org/10.1016/j.phymed.2010.08.015.
Heit, J. A., Spencer, F. A., & White, R. H. (2016). The epidemiology of venous thromboembolism. Journal of thrombosis and thrombolysis, 41(1), 3–14. https://doi.org/10.1007/s11239-015-1311-6.
Henke, P. K., Varma, M. R., Moaveni, D. K., Dewyer, N. A., Moore, A. J., Lynch, E. M., Longo, C., Deatrick, C. B., Kunkel, S. L., Upchurch, G. R., Jr, & Wakefield, T. W. (2007). Fibrotic injury after experimental deep vein thrombosis is determined by the mechanism of thrombogenesis. Thrombosis and haemostasis, 98(5), 1045–1055.
Hennan, J. K., Morgan, G. A., Swillo, R. E., Antrilli, T. M., Mugford, C., Vlasuk, G. P., Gardell, S. J., & Crandall, D. L. (2008). Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist, in a rat model of thrombosis. Journal of thrombosis and haemostasis: JTH, 6(9), 1558–1564. https://doi.org/10.1111/j.1538-7836.2008.03063.x.
Herbert, J. M., Tissinier, A., Defreyn, G., & Maffrand, J. P. (1993). Inhibitory effect of clopidogrel on platelet adhesion and intimal proliferation after arterial injury in rabbits. Arteriosclerosis and thrombosis: a journal of vascular biology, 13(8), 1171–1179. https://doi.org/10.1161/01.atv.13.8.1171
Himber, J., Wohlgensinger, C., Roux, S., Damico, L. A., Fallon, J. T., Kirchhofer, D., Nemerson, Y., & Riederer, M. A. (2003). Inhibition of tissue factor limits the growth of venous thrombus in the rabbit. Journal of thrombosis and haemostasis: JTH, 1(5), 889–895. https://doi.org/10.1046/j.1538-7836.2003.00110.x.
Jagadeeswaran, P., Cooley, B. C., Gross, P. L., & Mackman, N. (2016). Animal Models of Thrombosis from Zebrafish to Nonhuman Primates: Use in the Elucidation of New Pathologic Pathways and the Development of Antithrombotic Drugs. Circulation research, 118(9), 1363–1379. https://doi.org/10.1161/CIRCRESAHA.115.306823.
Jin, Q. Q., Sun, J. H., Du, Q. X., Lu, X. J., Zhu, X. Y., Fan, H. L., Hölscher, C., & Wang, Y. Y. (2017). Integrating microRNA and messenger RNA expression profiles in a rat model of deep vein thrombosis. International journal of molecular medicine, 40(4), 1019–1028. https://doi.org/10.3892/ijmm.2017.3105
Kurz, K. D., Main, B. W., & Sandusky, G. E. (1990). Rat model of arterial thrombosis induced by ferric chloride. Thrombosis research, 60(4), 269–280. https://doi.org/10.1016/0049-3848(90)90106-m.
Li, H., Zhang, B., Lu, S., Ji, D. G., Ding, M., Ye, Y. S., & Sun, D. J. (2019). siRNA-mediated silencing of PAI-1 gene acts as a promoter over the recanalization of endothelial progenitor cells in rats with venous thrombosis. Journal of cellular physiology, 234(11), 19921–19932. https://doi.org/10.1002/jcp.28590
Liu, H., Li, P., Lin, J., Chen, W., Guo, H., Lin, J., Liu, J., Lu, Z., Yao, X., Chen, Y., & Lin, B. (2019). Danhong Huayu Koufuye prevents venous thrombosis through antiinflammation via Sirtuin 1/NF-κB signaling pathway. Journal of ethnopharmacology, 241, 111975. https://doi.org/10.1016/j.jep.2019.111975.
Myers, D. D., Jr, Henke, P. K., Wrobleski, S. K., Hawley, A. E., Farris, D. M., Chapman, A. M., Knipp, B. S., Thanaporn, P., Schaub, R. G., Greenfield, L. J., & Wakefield, T. W. (2002). P-selectin inhibition enhances thrombus resolution and decreases vein wall fibrosis in a rat model. Journal of vascular surgery, 36(5), 928–938. https://doi.org/10.1067/mva.2002.128636.
Nakata, N., & Kira, Y. (2016). Effects of Preoperative Glycyrrhizin Infusion for the Prevention of Venous Thrombosis on the Tissue Expression of Antithrombin in a Rat Model. Annals of vascular diseases, 9(2), 95–101. https://doi.org/10.3400/avd.oa.16-00009.
Pazzini, C., Marcato, P. D., Prado, L. B., Alessio, A. M., Höehr, N. F., Montalvão, S., Paixão, D., Durán, N., & Annichino-Bizzacchi, J. M. (2015). Polymeric Nanoparticles of Enoxaparin as a Delivery System: In Vivo Evaluation in Normal Rats and in a Venous Thrombosis Rat Model. Journal of nanoscience and nanotechnology, 15(7), 4837–4843. https://doi.org/10.1166/jnn.2015.9816
Prado, L. B., Huber, S. C., Barnabé, A., Bassora, F. D. S., Paixão, D. S., Duran, N., Annichino-Bizzacchi, J. M. (2017) Characterization of PCL and Chitosan Nanoparticles as Carriers of Enoxaparin and Its Antithrombotic Effect in Animal Models of Venous Thrombosis. Journal of Nanotechnology, 1-7, https://doi.org/10.1155/2017/4925495
Parry, T. J., Huang, Z., Chen, C., Connelly, M. A., Perzborn, E., Andrade-Gordon, P., & Damiano, B. P. (2011). Arterial antithrombotic activity of rivaroxaban, an orally active factor Xa inhibitor, in a rat electrolytic carotid artery injury model of thrombosis. Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis, 22(8), 720–726. https://doi.org/10.1097/MBC.0b013e32834cb30e
Peternel, L., Drevensek, G., Cerne, M., Stalc, A., Stegnar, M., & Budihna, M. V. (2005). Evaluation of two experimental venous thrombosis models in the rat. Thrombosis research, 115(6), 527–534. https://doi.org/10.1016/j.thromres.2004.10.007.
Reyers, I., Mussoni, L., Donati, M. B., & de Gaetano, G. (1980). Failure of aspirin at different doses to modify experimental thrombosis in rats. Thrombosis research, 18(5), 669–674. https://doi.org/10.1016/0049-3848(80)90221-2.
Saitoh, M., Kaku, S., Funatsu, T., Koshio, H., Ishihara, T., Hirayama, F., Kawasaki, T., Sasamata, M. (2007). Comparison of YM50, an Oral, Direct Factor Xa Inhibitor, with Other Antithrombotic Agents in Rodent Venous and Arterial Thrombosis Models. Blood, 110(11):3155. https://doi.org/10.1182/blood.V110.11.3155.3155
Schoenwaelder, S. M., & Jackson, S. P. (2015). Ferric chloride thrombosis model: unraveling the vascular effects of a highly corrosive oxidant. Blood, 126(24): 2652-2653. https://doi.org/10.1182/blood-2015-09-668384.
Sood, V., Luke, C., Miller, E., Mitsuya, M., Upchurch, G. R., Jr, Wakefield, T. W., Myers, D. D., & Henke, P. K. (2010). Vein wall remodeling after deep vein thrombosis: differential effects of low molecular weight heparin and doxycycline. Annals of vascular surgery, 24(2), 233–241. https://doi.org/10.1016/j.avsg.2009.11.002
Tien, A. J., Chueh, T. H., Hsia, C. P., & Chien, C. T. (2016). Monascus Adlay and Monacolin K Attenuates Arterial Thrombosis in Rats through the Inhibition of ICAM-1 and Oxidative Stress. Kidney & blood pressure research, 41(6), 815–827. https://doi.org/10.1159/000452584
van Giezen, J. J., Berntsson, P., Zachrisson, H., & Björkman, J. A. (2009). Comparison of ticagrelor and thienopyridine P2Y (12) binding characteristics and antithrombotic and bleeding effects in rat and dog models of thrombosis/hemostasis. Thrombosis research, 124(5), 565–571. https://doi.org/10.1016/j.thromres.2009.06.029.
von Brühl, M. L., Stark, K., Steinhart, A., Chandraratne, S., Konrad, I., Lorenz, M., Khandoga, A., Tirniceriu, A., Coletti, R., Köllnberger, M., Byrne, R. A., Laitinen, I., Walch, A., Brill, A., Pfeiler, S., Manukyan, D., Braun, S., Lange, P., Riegger, J., Ware, J., Massberg, S. (2012). Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. The Journal of experimental medicine, 209(4), 819–835. https://doi.org/10.1084/jem.20112322.
Xin, G., Wei, Z., Ji, C., Zheng, H., Gu, J., Ma, L., Huang, W., Morris-Natschke, S. L., Yeh, J. L., Zhang, R., Qin, C., Wen, L., Xing, Z., Cao, Y., Xia, Q., Li, K., Niu, H., Lee, K. H., & Huang, W. (2017). Xanthohumol isolated from Humulus lupulus prevents thrombosis without increased bleeding risk by inhibiting platelet activation and mtDNA release. Free radical biology & medicine, 108, 247–257. https://doi.org/10.1016/j.freeradbiomed.2017.02.018.
Wakefield, T. W., Wrobleski, S. K., Sarpa, M. S., Taylor, F. B., Jr, Esmon, C. T., Cheng, A., & Greenfield, L. J. (1991). Deep venous thrombosis in the baboon: an experimental model. Journal of vascular surgery, 14(5), 588–598. https://doi.org/10.1067/mva.1991.32030.
Wang, X., Cheng, Q., Xu, L., Feuerstein, G. Z., Hsu, M. Y., Smith, P. L., Seiffert, D. A., Schumacher, W. A., Ogletree, M. L., & Gailani, D. (2005). Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice. Journal of thrombosis and haemostasis: JTH, 3(4), 695–702. https://doi.org/10.1111/j.1538-7836.2005.01236.x.
Wang, X., Smith, P. L., Hsu, M. Y., Ogletree, M. L., & Schumacher, W. A. (2006). Murine model of ferric chloride-induced vena cava thrombosis: evidence for effect of potato carboxypeptidase inhibitor. Journal of thrombosis and haemostasis: JTH, 4(2), 403–410. https://doi.org/10.1111/j.1538-7836.2006.01703.x.
Wong, P. C., Watson, C. A., Crain, J. E., Luettgen, J. M., Ogletree, M. L., Wexler, R. R., Lam, P. Y. S., Pinto, D. J., Knabb, R. M. (2006). Effects of the Factor Xa Inhibitor Apixaban on Venous Thrombosis and Hemostasis in Rabbits. Blood. 108 (11): 917. https://doi.org/10.1182/blood.V108.11.917.917.
Wong, P. C., Crain, E. J., Xin, B., Wexler, R. R., Lam, P. Y., Pinto, D. J., Luettgen, J. M., & Knabb, R. M. (2008). Apixaban, an oral, direct and highly selective factor Xa inhibitor: in vitro, antithrombotic and antihemostatic studies. Journal of thrombosis and haemostasis: JTH, 6(5), 820–829. https://doi.org/10.1111/j.1538-7836.2008.02939.x.
Zhou, J., May, L., Liao, P., Gross, P. L., & Weitz, J. I. (2009). Inferior vena cava ligation rapidly induces tissue factor expression and venous thrombosis in rats. Arteriosclerosis, thrombosis, and vascular biology, 29(6), 863–869. https://doi.org/10.1161/ATVBAHA.109.185678.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Andrezza Janine de Almeida Santos; Carlos Eduardo Rodrigues Lopes; Luiz Eduardo Alessio Junior; Neiva Pereira Paim; Keila Fernanda da Cruz Souza Pinto; Rodolfo Cassimiro Araújo Berber; Aline Morandi Alessio
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.