Comparación de los efectos cardiorrespiratorios y la eficacia analgésica perioperatoria de la infusión continua de dexmedetomidina o fentanilo durante la ovariohisterectomía en perras anestesiadas con propofol
DOI:
https://doi.org/10.33448/rsd-v12i13.43594Palabras clave:
Anestesia intravenosa total; Dexmedetomidina; Fentanilo; Perro; Propofol.Resumen
El objetivo del estudio era comparar los efectos cardiorrespiratorios, analgésicos perioperatorios y hemogasométricos de 16 perras sometidas a ovariohisterectomía electiva bajo infusión continua de dexmedetomidina o fentanilo. Las perras fueron premedicadas con morfina (0,5 mg/kg) y dexmedemidina (5 µg/kg) o acepromacina (0,05 mg/kg), intramuscular (IM), en GDEX o GFEN, respectivamente. Tras la inducción anestésica con propofol intravenoso (IV), los animales de GFEN recibieron un bolo de fentanilo (2,5 µg/kg) IV seguido de infusión continua (IC) (10 µg/kg/h) y los de GDEX recibieron un bolo de solución salina al 0,9% (volumen correspondiente de fentanilo) seguido de dexmedetomidina IC (1 µg/kg/h) y la anestesia se mantuvo con propofol (0,22 mg/kg/min). Al final del procedimiento, todos los animales fueron evaluados mediante la Glasgow Composite Pain Scale (GCPS) y la Visual Analogue Scale (VAS). Los datos se compararon con un valor estadístico de p > 0,05. La frecuencia cardiaca media fue estadísticamente inferior en GDEX en comparación con GFEN (p = 0,0498): 54,25 ± 3,919 y 88,38 ± 8,766 latidos por minuto, respectivamente. Por el contrario, la presión arterial media final fue significativamente mayor en GDEX que en GFEN (p = 0,0021): 99,38 ± 8,551 y 80,75 ± 11,12 mmHg, respectivamente. GDEX y GFEN, en las primeras 4 y 2 horas del postoperatorio, respectivamente, presentaron puntuaciones estadísticamente superiores a las basales por GCPS, produciéndose rescate analgésico en ambos grupos. Concluimos que ambos fármacos en las dosis propuestas fueron seguros y eficaces en el control nociceptivo intraoperatorio; sin embargo, no consiguieron promover la analgesia postoperatoria.
Citas
Andreoni, V., & Lynne Hughes, J. (2009). Propofol and fentanyl infusions in dogs of various breeds undergoing surgery. Veterinary Anaesthesia and Analgesia, 36(6), 523–531.
Brodeur, A., Wright, A., & Cortes, Y. (2017). Hypothermia and targeted temperature management in cats and dogs. Journal of Veterinary Emergency and Critical Care, 27(2), 151–163.
Bustamante, R., Aguado, D., Cediel, R, Gómez de Segura, I. A., & Canfrán, S (2018). Clinical comparison of the effects of isoflurane or propofol anaesthesia on mean arterial blood pressure and ventilation in dogs undergoing orthopaedic surgery receiving epidural anaesthesia. The Veterinary Journal, 233, 49–54.
Canfrán, S., Bustamante, R., González, P., Cediel, R., Re, M., & de Segura, I. A. G. (2016). Comparison of sedation scores and propofol induction doses in dogs after intramuscular administration of dexmedetomidine alone or in combination with methadone, midazolam, or methadone plus midazolam. The Veterinary Journal, 210, 56–60.
Clark-Price, S. (2015). Inadvertent Perianesthetic Hypothermia in Small Animal Patients. Veterinary Clinics of North America: Small Animal Practice, 45(5), 983–994.
Davis, C. A., Seddighi, R., Cox, S. K., Sun, X., Egger, C. M., & Doherty, T. J. (2017). Effect of fentanyl on the induction dose and minimum infusion rate of propofol preventing movement in dogs. Veterinary Anaesthesia and Analgesia, 44(4), 727–737.
Dutta, S., Karol, M. D., Cohen, T., Jones, R. M., & Mant, T. (2001). Effect of dexmedetomidine on propofol requirements in healthy subjects. Journal of Pharmaceutical Sciences, 90(2), 172–181.
Dyson, D. H. (2008). Perioperative Pain Management in Veterinary Patients. Veterinary Clinics of North America: Small Animal Practice, 38(6), 1309–1327.
Gaynor JS, Muir III WW (2015). Acute Pain Management. Veterinary Pain Management (3rd edn). Gaynor JS, Muir III WW (eds.). Saunders Elsevier, USA, 444–471.
Grasso, S. C., Ko, J. C., Weil, A. B., Paranjape, V., & Constable, P. D. (2015). Hemodynamic influence of acepromazine or dexmedetomidine premedication in isoflurane-anesthetized dogs. Journal of the American Veterinary Medical Association, 246(7), 754–764.
Grubb, T., Sager, J., Gaynor, J. S., Montgomery, E., Parker, J. A., Shafford, H., & Tearney, C. (2020). 2020 AAHA Anesthesia and Monitoring Guidelines for Dogs and Cats. Journal of the American Animal Hospital Association, 56(2), 59–82.
Gutierrez-Blanco, E., Victoria-Mora, J. M., Ibancovichi-Camarillo, J. A., Sauri-Arceo, C. H., Bolio-González, M. E., Acevedo-Arcique, C. M., Marin-Cano, G., & Steagall, P. V. (2015). Postoperative analgesic effects of either a constant rate infusion of fentanyl, lidocaine, ketamine, dexmedetomidine, or the combination lidocaine-ketamine-dexmedetomidine after ovariohysterectomy in dogs. Veterinary Anaesthesia Analgesia, 42(3):309-18.
Hansen, B. D. (2005). Analgesia and sedation in the critically ill. Journal of Veterinary Emergency and Critical Care, 15(4), 285–294.
Hernández-Avalos, I., Valverde, A., Ibancovichi-Camarillo, J. A., Sánchez-Aparicio, P., Recillas-Morales, S., Osorio-Avalos, J., Rodríguez-Velázquez, D., & Miranda-Cortés, A. E. (2020). Clinical evaluation of postoperative analgesia, cardiorespiratory parameters and changes in liver and renal function tests of paracetamol compared to meloxicam and carprofen in dogs undergoing ovariohysterectomy. PLOS ONE, 15(2), e0223697.
Hwang, W., Lee, J., Park, J., & Joo, J. (2015). Dexmedetomidine versus remifentanil in postoperative pain control after spinal surgery: a randomized controlled study. BMC Anesthesiology, 15(1), 15–21.
Khan, Z. H., Arab, S., & Emami, B. (2011). Comparison of the effects of anesthesia with isoflurane and total intravenous anesthesia on the intensity of body temperature reduction during anesthesia and incidence of postoperative chills. Acta Med Iran, 49(7), 425-432.
Liu, W-S., Bidwai, A. V., Stanley, T. H., & Isern-Amaral, J. (1976). Cardiovascular Dynamics After Large Doses of Fentanyl and Fentanyl Plus N2O in the Dog. Anesthesia & Analgesia, 55(2), 168–172.
Martin-Flores, M., Mostowy, M. M., Pittman, E., Sakai, D. M., Mohammed, H. O., Gleed, R. D., & Campoy, L. (2019). Investigation of associations between preoperative acepromazine or dexmedetomidine administration and development of arterial hypotension or bradycardia in dogs undergoing ovariohysterectomy. Journal of the American Veterinary Medical Association, 255(2), 193–199.
McEwan, A. I., Smith, C., Dyar, O., Goodman, D., Smith, L. R., & Glass, O. S. (1993). Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology, 78(5), 864–869.
Mendes, G. M., & Selmi, A. L. (2003). Use of a combination of propofol and fentanyl, alfentanil, or sufentanil for total intravenous anesthesia in cats. Journal of the American Veterinary Medical Association, 223(11), 1608–1613.
Moura, R. S., Bittar, I. P., Gomes, J. H., de Oliveira, Y. V. R., de Sousa Filho, G. D., de Faria Soares, G. C. F., Lima, E. M., & Franco, L. G. (2022). Plasma concentration, cardiorespiratory and analgesic effects of ketamine-fentanyl infusion in dogs submitted to mastectomy. BMC Vet Res. 18(1):225.
Murrell J C & Hellebrekers L J (2005). Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properties in the dog. Veterinary Anaesthesia and Analgesia, 32(3), 117–127.
Naaz, S. (2014). Dexmedetomidine in Current Anaesthesia Practice- A Review. Journal Of Clinical and Diagnostic Research, 8(10), GE01–GE04.
Nagashima, J. K., Gonçalves, L. A., Pereira, M. A., Talib, M. S., de Olveira, C. M., Ambrósio, A. M., & Fantoni, D. T. (2022). Microcirculation assessment of dexmedetomidine constant rate infusion during anesthesia of dogs with sepsis from pyometra: a randomized clinical study. Veterinary Anaesthesia and Analgesia. 49(6):536-545. 10.1016/j.vaa.2022.07.005.
Pascoe, P. J. (2000). Opioid Analgesics. Veterinary Clinics of North America: Small Animal Practice, 30(4), 757–772.
Pascoe, P. J., Raekallio, M., Kuusela, E., McKusick, B., & Granholm, M. (2006). Changes in the minimum alveolar concentration of isoflurane and some cardiopulmonary measurements during three continuous infusion rates of dexmedetomidine in dogs. Veterinary Anaesthesia and Analgesia, 33(2), 97–103.
Raffe, M. R. (2020). Total Intravenous Anesthesia for the Small Animal Critical Patient. Vet Clin North Am Small Anim Practice, 50(6), 1433-1444.
Robinson, T. M., Kruse-Elliott, K. T., Markel, M. D., Pluhar, G. E., Massa, K., & Bjorling, D. E. (1999). A comparison of transdermal fentanyl versus epidural morphine for analgesia in dogs undergoing major orthopedic surgery. J Am Anim Hosp Assoc, 35(2), 95–100.
Sano, T., Nishimura, R., Kanazawa, H., Igarashi, E., Nagata, Y., Mochizuki, M., & Sasaki, N. (2006). Pharmacokinetics of fentanyl after single intravenous injection and constant rate infusion in dogs. Veterinary Anaesthesia and Analgesia, 33(4), 266–273.
Simon, B. T., Scallan, E. M., Coursey, C. D., Kiehl, W. M., & Moore, E. J. (2018). The clinical effects of a low dose dexmedetomidine constant rate infusion in isoflurane anesthetized cats. The Veterinary Journal, 234, 55–60.
Smith, C. K., Seddighi, R., Cox, S. K., Sun, X., Knych, H. K., & Doherty, T. J. (2017). Effect of dexmedetomidine on the minimum infusion rate of propofol preventing movement in dogs. Veterinary Anaesthesia and Analgesia, 44(6), 1287–1295.
Uilenreef, J. J., Murrell, J. C., McKusick, B. C., & Hellebrekers, L. J. (2008). Dexmedetomidine continuous rate infusion during isoflurane anaesthesia in canine surgical patients. Veterinary Anaesthesia and Analgesia, 35(1), 1–12.
Valtolina, C., Robben, J. H., Uilenreef, J., Murrell, J. C., Aspegrén, J., McKusick, B. C., & Hellebrekers, L. J. (2009). Clinical evaluation of the efficacy and safety of a constant rate infusion of dexmedetomidine for postoperative pain management in dogs. Veterinary Anaesthesia and Analgesia, 36(4), 369–383.
Van Oostrom, H., et al. (2011). Neurophysiological assessment of the sedative and analgesic effects of a constant rate infusion of dexmedetomidine in the dog. The Veterinary Journal, 190(3), 338–344.
Varvel, J. R., Shafer, S. L., Hwang, S. S., Coen, P. A., & Stanski, D. R. (1989). Absorption characteristics of transdermally administered fentanyl. Anesthesiology, 70(6), 928–934.
Wagner, A. E., & Hellyer, P. W. (2002). Observations of Private Veterinary Practices in Colorado, with an Emphasis on Anesthesia. Journal of Veterinary Medical Education, 29(3), 176–182.
Williamson, A. J., Soares, J. H. N., Pavlisko, N. D., McAlister Council-Troche, R., & Henao-Guerrero, N. (2017). Isoflurane minimum alveolar concentration sparing effects of fentanyl in the dog. Veterinary Anaesthesia and Analgesia, 44(4), 738–745.
Yaksh, T. L., Noueihed, R. Y., & Durant, P. A. (1986). Studies of the pharmacology and pathology of intrathecally administered 4-anilinopiperidine analogues and morphine in the rat and cat. Anesthesiology, 64(1), 54–66.
Yazdi, B., Modir, H., Kamali, A., & Masouri, H. (2020). Change in saturation oxygen and hemodynamic responses by adding intrathecal dexmedetomidine vs. sufentanil to bupivacaine in patients undergoing dynamic hip screw operation: a randomized clinical trial. Med Gas Res, 10(4), 144–148.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Gabriela Conterno; Felipe Comassetto; Murilo Gabriel Consolim; Ronise Tocheto; Nilson Oleskovicz
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.