Estudio experimental y numérico del perfil de calentamiento de un horno solar aplicado al secado

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i7.4368

Palabras clave:

Energía solar; Modelado; Simulación; Calefacción.

Resumen

Entre las técnicas de conservación de alimentos, se puede resaltar el secado. Sin embargo, esta es una operación que exige un alto consumo de energía y puede hacerse posible mediante la aplicación de una fuente de energía alternativa no contaminante e inagotable, como la energía solar. Un dispositivo aplicado al secado que opera desde la captura de rayos solares es el horno solar. Los objetos reflectantes reflejan los rayos del sol en el interior de esta secadora, proporcionando un aumento en la temperatura del aire contenido en el horno, para su posterior aplicación como aire de secado. Para comprender mejor el funcionamiento de este secador, varios autores lo han estado estudiando a través de simulaciones por computadora. Teniendo en cuenta lo anterior, el objetivo de este trabajo es llevar a cabo un estudio experimental y numérico del calentamiento de un horno solar. El experimento consistió en exponer el horno a la luz solar y registrar continuamente los valores de temperatura ambiente y en diferentes posiciones en el equipo. El modelo matemático utilizado consiste en balances de energía individuales para cada componente de la secadora, y el cálculo de los coeficientes de transferencia de calor en forma convectiva y por radiación se basaron en trabajos en la literatura. El modelo se implementó en el software libre Scilab®, utilizando el solucionador lsoda en el paquete ODEPACK y los experimentos se desarrollaron en UFTM en Uberaba - MG. Los resultados mostraron que el enfoque de modelado empleado fue eficiente para predecir el comportamiento térmico del secador, que alcanzó temperaturas adecuadas para el secado (Ts* = 82oC) utilizando solo energía solar.

Biografía del autor/a

Erica Victor Faria, Universidade Federal do Triângulo Mineiro

Departamento de Engenharia Química

Nadia Guimarães Sousa, Universidade Federal do Triângulo Mineiro

Departamento de Engenharia Química

Kassia Graciele dos Santos, Universidade Federal do Triângulo Mineiro

Departamento de Engenharia Química

Citas

Abud AKS & Narain N. (2009). Incorporação da farinha de resíduo do processamento de polpa de fruta em biscoitos: uma alternativa de combate ao desperdício. Brazilian Journal of Food Tech., 12 (4), 257-65. doi: 0.4260/BJFT2009800900020

Almeida R, Santos N, Silva V, Ribeiro V, Luíz M, Barros E, Nunes J, Nascimento A, Cavalcante J & Nogueira H. (2020). Obtaining powdered sweet potato in spouted bed and influence of drying temperature on physicochemical properties. Research, Society and Development, 9(4), e124942942. doi: 10.33448/rsd-v9i4.2942

Alves APDC, Correa AD, Oliveira FC, Isquierdo EP, Abreu CMP & Borem FM. (2014). Influence of drying temperature on the chemical constituents of jaboticaba (Plinia jaboticaba (Vell.) berg) skin. Acta Scientiarum. Technology, 36(4), 721-26. doi: 10.4025/actascitechnol.v36i4.19305

Antoine, R. (2016) Modelagem E Análise De Eficiência De Um Fogão Solar. Dissertação de mestrado. Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas. Universidade Federal do ABC.

Bontempo L, Castejon L & Santos K. (2020). Drying of Tangerine peel: kinetics and performance of a convective solar dryer. Research, Society and Development, 9(6), e44963458. doi:10.33448/rsd-v9i6.3458

Borges SV, Mancini MC, Corrêa JLG & Leite J. (2010). Drying of banana prata and banana d’água by forced convection. Ciência e Tecnologia de Alimentos, 1, 605-12. doi: 10.1590/S0101-20612010000300006.

Brasil. (2018). Projeções do Agronegócio: BRASIL 2017/2018 a 2027/2028. Secretaria de Política Agrícola. Brasília. Acesso em 15 abril, em: <https://www.gov.br/agricultura/pt-br/assuntos/politica-agricola/todas-publicacoes-de-politica-agricola/projecoes-do-agronegocio/PROJECOES2018_FINALIZADA_web_05092018.pdf/view>.

Esteche C. (2008). A invisibilidade que brota no lixo. Website Rede Sul de Notícias. Acesso em 16 abril, em http://www. redesuldenoticias.com.br/noticias

Guia da Energia Solar. (2013). Construção e avaliação de desempenho de fornos solares. Acesso em 17 abril, em http://www.cienciaviva.pt/ rede /himalaya/home/guia7.pdf

Guimarães B, Silva J, Santos K & Vieira Neto J. (2020). Sequencing of unit operations for integral and sustainable peanut processing. Research, Society and Development, 9(6), e67963449. doi:10.33448/rsd-v9i6.3449

Hossain MA, Gottschalk K & Amer BMA. (2010). Mathematical modelling for drying of tomato in hybrid dryer. The Arabian Journal for Science and Engineering, 35, 239-62.

Kumar, M; Sansaniwal, S K & Khatak, P. (2016) Progress in solar dryers for drying various commodities. Renewable and Sustainable Energy Reviews, 1, 346–360. doi: 10.1016/j.rser.2016.04.028

Murthy MVR. (2009). A Review of New Technologies, Models and Experimental Investigations of Solar Driers. Renewable and Sustainable Energy Reviews, 13, 835–44. doi: 10.1016/j.rser.2008.02.010

Ondieki HO, Koech RK, Tonui JK & Rotich SK. (2014). Mathematical modeling of solar air collector with a trapezoidal corrugated absorber plate. International journal of scientific & technology research, (3), 51-6.

Paiva LS & Sousa NG. (2015). Simulação e análise de um sistema de refrigeração por absorção e aquecimento solar. Rev. Brasileira de Ciência, Tecnologia e Inovação, 1, 25-42.

Rigueto C, Nazari M, Evaristo L, Rossetto M, Dettmer A, Geraldi C & Piccin J. (2020). Influence of foam-mat drying temperature of red jambo (Syzygium malaccense). Research, Society and Development, 9(3), e40932382. doi: 10.33448/rsd-v9i3.2382

Rodrigues D & Matajs R. (2006). Um banho de sol para o Brasil: o que os aquecedores solares podem fazer pelo meio ambiente e a sociedade. Ed. Vitae Civilis. Acesso em 15 abril, em: https://ufsj.edu.br/portal-repositorio/File/mestradoenergia/UmBanhoDeSol.pdf

Santos N, Almeida R, Pereira T, Queiroga A, Silva V, Amaral D, Almeida R, Ribeiro V, Barros E & Silva L. (2020a). Mathematical modeling applied to the drying kinetics of pitomba bark (Talisia esculenta). Research, Society and Development, 9(2), e46921986. doi: 10.33448/rsd-v9i2.1986

Santos N, Almeida R, Silva L, Muniz C, Pereira T, Silva V, Ribeiro V, Moreira F, Pinheiro W & Eduardo R. (2020b). Determination of kinetic parameters during the pineapple peel drying process. Research, Society and Development, 9(4), e06942794. doi: 10.33448/rsd-v9i4.2794

Silva LRC, Ribeiro MBM, Oliveira AD, Silva CS, Faria EV & Santos KG. (2019). Destilação solar do solvente etanol proveniente da extração de óleo de coco. Brazilian Journal of Development, 5, 28964-28982. doi: 10.34117/bjdv5n12-066

Silva S & Sousa N. (2020). Auxiliary solar heating system: simulation and control. Research, Society and Development, 9(3), e188932730. doi: 10.33448/rsd-v9i3.2730

Siqueira V, Mabasso G, Quequeto W, Silva C, Martins E & Isquierdo E. (2020). Drying kinetics and effective diffusion of watermelon seeds. Research, Society and Development, 9(4), e16942887. doi: 10.33448/rsd-v9i4.2887

Smitabhindu R, Janjai S & Chankong V. (2007). Optimization of a solar-assisted drying system for drying bananas. Renewable Energy, (33), 1523-31. doi: 10.1016/j.renene.2007.09.021

Stoppe ACR, Vieira Neto JL & Santos KG. (2020). Development of a fixed bed solar dryer: experimental study and CFD simulation. Research, Society and Development, 9(3), e123932667. doi: 10.33448/rsd-v9i3.2667

Taşeri L, Aktaş M, Şevik S, Gülcü M, Uysal Seçkin G & Aktekeli B. (2018). Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chemistry, 260(November 2017), 152–9. doi: 10.1016/j.foodchem.2018.03.122

Tavares FP, Silvério BC, Vieira Neto JL & Santos KG. (2019). Extração sustentável de óleo de pinhão manso com solvente aquecido por radiação solar. Brazilian Journal of Development, 5, 28909-25. doi: 10.34117/bjdv5n12-062

Tavares SR & Sousa NG. (2019). Sistema de aquecimento solar de água: simulação e análise. Revista Brasileira de Ciência, Tecnologia e Inovação, 4(1), 15-31. doi: 10.18554/rbcti.v4i1.3360

Téllez MC, Figueroa IP, Téllez BC, Vidaña ECL & Ortiz AL. (2018). Solar drying of Stevia (Rebaudiana Bertoni) leaves using direct and indirect technologies. Solar Energy, 159 (November 2017), 898–907. doi: 10.1016/j.solener.2017.11.031

Vásquez J, Reyes A & Pailahueque N. (2019). Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system. Renewable Energy, 139, 1375–90. doi: https://doi.org/10.1016/j.renene.2019.02.085

Venturin A & Silva L. (2019). Modeling and simulation of paddy drying: a bibliometric analysis. Research, Society and Development, 8(1), e4881658. doi: 10.33448/rsd-v8i1.658

Zhang M, Tang J, Mujumdar AS & Wang S. (2006). Trends in Microwave Related Drying of Fruits and Vegetables. Trends in Food Science & Technology, 17, 524-34. doi: 10.1016/j.tifs.2006.04.01

Publicado

30/05/2020

Cómo citar

FARIA, E. V.; SOUSA, N. G.; SANTOS, K. G. dos. Estudio experimental y numérico del perfil de calentamiento de un horno solar aplicado al secado. Research, Society and Development, [S. l.], v. 9, n. 7, p. e555974368, 2020. DOI: 10.33448/rsd-v9i7.4368. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4368. Acesso em: 2 jul. 2024.

Número

Sección

Ingenierías