Terapia con células madre para el tratamiento de la insuficiencia renal crónica

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i11.43729

Palabras clave:

Insuficiencia renal crónica; Terapia de reemplazo renal; Células madre mesenquimatosas.

Resumen

Este estudio tuvo como objetivo describir una terapia alternativa para pacientes con Insuficiencia Renal Crónica (IRC) utilizando células madre (CM). Para realizar esta revisión integradora de la literatura, se relevaron artículos en las siguientes bases de datos: PubMed, Biblioteca Científica Electrónica en Línea (Scielo), Coordinación para el Perfeccionamiento del Personal de la Educación Superior (CPPES), Biblioteca Virtual en Salud (BVS). La encuesta se realizó entre los meses de febrero y septiembre de 2023. La insuficiencia renal crónica es el resultado de un daño progresivo e irreversible a las nefronas y pueden ocurrir complicaciones los individuos afectados por IRC requieren adaptación en sus hábitos de vida, como seguir una dieta restrictiva, el uso continuo de medicamentos y dependen del equipamiento. Las terapias de reemplazo renal (TRR) son los tratamientos comúnmente utilizados para la IRC, es decir, hemólisis o diálisis peritoneal, otra forma de TRR actualmente es el trasplante de riñón. A pesar de ser muy eficaces, estos tratamientos interfieren en la calidad de vida y el bienestar físico y mental de los pacientes. La eficacia del tratamiento de la ERC mediante TC tiene el gran potencial de reparar lesiones renales, reduciendo el desarrollo y progresión de la enfermedad, actuando para mejorar las funciones renales. Concluimos que las células madre tienen un gran potencial como agentes terapéuticos para personas con ERC, en estudios animales y preclínicos, sin embargo, ante esto, se necesitan más estudios en humanos, para comprobar la viabilidad, seguridad y eficacia de la TC.

Citas

Aghajani Nargesi, A., Lerman, L. O., & Eirin, A. (2017). Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges. Stem cell research & therapy, 8(1), 273. https://doi.org/10.1186/s13287-017-0727-7.

Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D. A., van der Pluijm, I., Essers, J., van Cappellen, W. A., van IJcken, W. F., Houtsmuller, A. B., Pothof, J., de Bruin, R. W. F., Madl, T., Hoeijmakers, J. H. J., Campisi, J., & de Keizer, P. L. J. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 169(1), 132–147.e16. https://doi.org/10.1016/j.cell.2017.02.031.

Barbosa, G. S., & Valadares, G. V. (2009). Experimentando atitudes e sentimentos: o cotidiano hemodialítico como base para o cuidar em enfermagem. Escola Anna Nery Revista de Enfermagem. 13(1), 17-23. https://doi.org/10.1590/S1414-81452009000100003.

Bastos, M.G., Bregman, R., & Kirsztajn, G. M. (2010). Doença renal crônica: frequente e grave, mas também prevenível e tratável. Revista da Associação Médica Brasileira, 56(2), 248-253. https://doi.org/10.1590/S0104-42302010000200028

Chen, F., Chen, N., Xia, C., Wang, H., Shao, L., Zhou, C., & Wang, J. (2023). Mesenchymal Stem Cell Therapy in Kidney Diseases: Potential and Challenges. Cell transplantation, 32, 9636897231164251. https://doi.org/10.1177/0963689723116425.

Eirin, A., & Lerman, L. O. (2014). Mesenchymal stem cell treatment for chronic renal failure. Stem cell research & therapy, 5(4), 83. https://doi.org/10.1186/scrt472.

Fachin, O. (2017). Fundamentos da Metodologia Cientifica: noções básicas em pesquisa cietifica. (6a ed.) Saraiva.

Fleig, S. V., & Humphreys, B. D. (2014). Rationale of mesenchymal stem cell therapy in kidney injury. Nephron. Clinical practice, 127(1-4), 75–80. https://doi.org/10.1159/000363680.

Franco, M. L., Beyerstedt, S., & Rangel, É. B. (2021). Klotho and Mesenchymal Stem Cells: A Review on Cell and Gene Therapy for Chronic Kidney Disease and Acute Kidney Disease. Pharmaceutics, 14(1), 11. https://doi.org/10.3390/pharmaceutics14010011.

Grange, C., Tritta, S., Tapparo, M., Cedrino, M., Tetta, C., Camussi, G., & Brizzi, M. F. (2019). Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Scientific reports, 9(1), 4468. https://doi.org/10.1038/s41598-019-41100-9.

Grange, C., Skovronova, R., Marabese, F., & Bussolati, B. (2019). Stem Cell-Derived Extracellular Vesicles and Kidney Regeneration. Cells, 8(10), 1240. https://doi.org/10.3390/cells8101240.

Gil, AC. (2019). Como elaborar Projetos de Pesquisa.(6a ed.) Atlas.

Guo, J., Wang, R., & Liu, D. (2021). Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate Sepsis-Induced Acute Kidney Injury by Promoting Mitophagy of Renal Tubular Epithelial Cells via the SIRT1/Parkin Axis. Frontiers in endocrinology, 12, 639165. https://doi.org/10.3389/fendo.2021.639165.

Harari-Steinberg, O., Pleniceanu, O., & Dekel, B. (2011). Selecting the optimal cell for kidney regeneration: fetal, adult or reprogrammed stem cells. Organogenesis, 7(2), 123–134. https://doi.org/10.4161/org.7.2.15783.

Hickson, L. J., Eirin, A., & Lerman, L. O. (2016). Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney international, 89(4), 767–778. https://doi.org/10.1016/j.kint.2015.11.023.

Huang, Y., & Yang, L. (2021). Mesenchymal stem cells and extracelular vesicles in therapy against kidney diseases. Stem Cell Research & Therapy, 12(219), 1-12. https://doi.org/10.1186/s13287-021-02289-7.

Kdigo. (2012). KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Official Journal of the international society of nephrology.

Liu, D., Cheng, F., Pan, S., & Liu, Z. (2020). Stem cells: a potential treatment option for kidney diseases. Stem cell research & therapy, 11(1), 249. https://doi.org/10.1186/s13287-020-01751-2.

Martos-Rus, C., Katz-Greenberg, G., Lin, Z., Serrano, E., Whitaker-Menezes, D., Domingo-Vidal, M., & Martinez Cantarin, M. P. (2021). Macrophage and adipocyte interaction as a source of inflammation in kidney disease. Sci Rep, 11(1), 2974. https://doi.org/10.1038/s41598-021-82685-4.

Monteiro, B. S., Argolo Neto, N. M., & Del Carlo, R. J. (2010). Células-tronco mesenquimais. Ciência Rural, 40(1), 238–245. https://doi.org/10.1590/S0103-84782010000100040.

Pino, C. J., & Humes, H. D. (2010). Stem cell technology for the treatment of acute and chronic renal failure. Translational research : the journal of laboratory and clinical medicine, 156(3), 161–168. https://doi.org/10.1016/j.trsl.2010.07.005.

Prates, A. B., Amaral, F. B., Vacaro, M. Z., Gross, J. L., Camargo, J. L., & Silveiro, S. P. (2007). Avaliação da Filtração Glomerular Através da Medida da Cistatina C Sérica. Braz. J. Nephrol., 29(1), 48-55. https://bjnephrology.org/wp-content/uploads/2019/08/jbn_v29n1a10.pdf.

Quintana, A. M., Weissheimer, T. K. dos S., & Hermann, C. (2011). Atribuições de significados ao transplante renal. Psico, 42(1). Recuperado de https://revistaseletronicas.pucrs.br/ojs/index.php/revistapsico/article/view/6057.

Ribeiro, P. C., Lojudice, F. H., Fernandes-Charpiot, I. M. M., Baptista, M. A. S. F., de Almeida Araújo, S., Mendes, G. E. F., Sogayar, M. C., Abbud-Filho, M., & Caldas, H. C. (2020). Therapeutic potential of human induced pluripotent stem cells and renal progenitor cells in experimental chronic kidney disease. Stem cell research & therapy, 11(1), 530. https://doi.org/10.1186/s13287-020-02060-4.

Sahay, M., Kalra, S., & Bandgar, T. (2012). Renal endocrinology: The new frontier. Indian Journal of Endocrinology and Metabolism, 16(2), 154-155. 10.4103/2230-8210.93729.

Semedo, P., Costa, M. C., Cenedeze, M. A., Malheiros, D. M. A. C., Reis, M. A., Shimizu, M. H., Seguro, A. C., Silva, A. P., & Câmara, N. O. S. (2009). Mesenchymal Stem Cells Attenuate Renal Fibrosis Through Immune Modulation and Remodeling Properties in a Rat Remnant Kidney Model. Stem Cell Research & Therapy, 27(12), 3063–3073. https://doi.org/10.1002/stem.214.

Singh, J., & Singh, S. (2023). Review on kidney diseases: types, treatment and potential of stem cell therapy. Renal Replacement Therapy, 9(21). https://doi.org/10.1186/s41100-023-00475-2.

Sodré, F. L., Costa, J. C. B., & Lima, J. C. C. (2007). Avaliação da função e da lesão renal: um desafio laboratorial. Jornal Brasileiro de Patologia e Medicina Laboratorial, 43 (5), 329-337. https://doi.org/10.1590/S1676-24442007000500005.

Song, T., Eirin, A., Zhu, X., Zhao, Y., Krier, J. D., Tang, H., Jordan, K. L., Woollard, J. R., Taner, T., Lerman, A., & Lerman, L. O. (2020). Mesenchymal Stem Cell-Derived Extracellular Vesicles Induce Regulatory T Cells to Ameliorate Chronic Kidney Injury. Hypertension (Dallas, Tex. : 1979), 75(5), 1223–1232. https://doi.org/10.1161/HYPERTENSIONAHA.119.14546.

Torrico, S., Hotter, G., & Játiva, S. (2022). Development of Cell Therapies for Renal Disease and Regenerative Medicine. International journal of molecular sciences, 23(24), 15943. https://doi.org/10.3390/ijms232415943.

Torres Crigna, A., Daniele, C., Gamez, C., Medina Balbuena, S., Pastene, D. O., Nardozi, D., Brenna, C., Yard, B., Gretz, N., & Bieback, K. (2018). Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Frontiers in medicine, 5, 179. https://doi.org/10.3389/fmed.2018.00179.

Xing, L., Cui, R., Peng, L., Ma, J., Chen, X., Xie, R. J., & Li, B. (2014). Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury. Stem cell research & therapy, 5(4), 101. https://doi.org/10.1186/scrt489.

Yang, W. Y., Chen, L. C., Jhuang, Y. T., Lin, Y. J., Hung, P. Y., Ko, Y. C., Tsai, M. Y., Lee, Y. W., Hsu, L. W., Yeh, C. K., Hsu, H. H., & Huang, C. C. (2021). Injection of hybrid 3D spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells into the renal cortex improves kidney function and replenishes glomerular podocytes. Bioengineering & translational medicine, 6(2), e10212. https://doi.org/10.1002/btm2.10212.

Yun, C. W., & Lee, S. H. (2019). Potential and Therapeutic Efficacy of Cell-based Therapy Using Mesenchymal Stem Cells for Acute/chronic Kidney Disease. International journal of molecular sciences, 20(7), 1619. https://doi.org/10.3390/ijms20071619.

Zhang, Z., Yang, C., Shen, M., Yang, M., Jin, Z., Ding, L., Jiang, W., Yang, J., Chen, H., Cao, F., & Hu, T. (2017). Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction. Stem cell research & therapy, 8(1), 89. https://doi.org/10.1186/s13287-017-0543-0.

Publicado

31/10/2023

Cómo citar

PEREIRA, B. G. .; WARAGAYA , T. A. .; PINTO, G. L. .; MUSCALU, M. A. .; SILVA, G. S. da .; MALDONADO, A. L. S. . Terapia con células madre para el tratamiento de la insuficiencia renal crónica . Research, Society and Development, [S. l.], v. 12, n. 11, p. e91121143729, 2023. DOI: 10.33448/rsd-v12i11.43729. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43729. Acesso em: 17 jul. 2024.

Número

Sección

Revisiones