Modelo de análisis de decisión multicriterios para elegir el mejor donante de délulas madre hematopoyéticas
DOI:
https://doi.org/10.33448/rsd-v13i1.44678Palabras clave:
Trasplante de células madre hematopoyéticas; Donante; Decisión multi-criterio; Software DEXi.Resumen
El trasplante alogénico de células madre hematopoyéticas se utiliza en el tratamiento de enfermedades hematológicas y no hematológicas, transfiriendo células madre de un donante sano al paciente. La selección del donante requiere compatibilidad del antígeno leucocitario humano, considerando factores como la edad, la correspondencia de género, el tipo de sangre y la serología para citomegalovirus, siendo una estrategia esencial para el éxito del trasplante. Este artículo propone integrar dos herramientas: REDCap (Research Electronic Data Capture) para formularios electrónicos y DEXi para análisis de decisiones multicriterio. El objetivo es abordar un proceso de toma de decisiones complejo al elegir al mejor donante, considerando múltiples parámetros cualitativos. Se seleccionaron criterios relevantes y se construyeron formularios REDCap para la recopilación de datos. Se desarrolló un modelo DEX basado en un árbol de decisiones jerarquizado, con valores insertados por la autora siguiendo reglas predefinidas. El análisis involucró a cuatro donantes hipotéticos. Los resultados destacaron al donante 1 por su fuerte coincidencia HLA con el receptor, asignándole un peso jerárquico más alto. El modelo indicó al donante 1 como la elección preferida. La metodología DEX respondió a la pregunta de decisión con resultados gráficos visualmente accesibles. El uso prometedor de la plataforma REDCap y la evaluación positiva del modelo DEXi sugieren que es una tecnología próspera para optimizar la práctica médica en trasplantes.
Citas
Bohanec, M. (2017). Multi-criteria dex models: An overview and analysis. Proceedings of the 14th International Symposium on Operational Research, SOR 2017, 2017-Septe, 155–160.
Bohanec, M., Miljković, D., Valmarska, A., Mileva Boshkoska, B., Gasparoli, E., Gentile, G., Koutsikos, K., Marcante, A., Antonini, A., Gatsios, D., Rigas, G., Fotiadis, D. I., Tsiouris, K. M., & Konitsiotis, S. (2018). A decision support system for Parkinson disease management: expert models for suggesting medication change. Journal of Decision Systems, 27, 164–172. https://doi.org/10.1080/12460125.2018.1469320
Bohanec, M., Žnidaržič, M., Rajkovič, V., Bratko, I., & Zupan, B. (2013). DEX methodology: Three decades of qualitative multi-attribute modeling. Informatica (Slovenia), 37(1), 49–54.
Buturovic, L., Shelton, J., Spellman, S. R., Wang, T., Friedman, L., Loftus, D., Hesterberg, L., Woodring, T., Fleischhauer, K., Hsu, K. C., Verneris, M. R., Haagenson, M., & Lee, S. J. (2018). Evaluation of a Machine Learning-Based Prognostic Model for Unrelated Hematopoietic Cell Transplantation Donor Selection. Biology of Blood and Marrow Transplantation, 24(6), 1299–1306. https://doi.org/10.1016/j.bbmt.2018.01.038
Dehn, J., Spellman, S., Hurley, C. K., Shaw, B. E., Barker, J. N., Burns, L. J., Confer, D. L., Eapen, M., Fernandez-Vina, M., Hartzman, R., Maiers, M., Marino, S. R., Mueller, C., Perales, M. A., Rajalingam, R., & Pidala, J. (2020). Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: guidelines from the NMDP/CIBMTR. Blood, 134(January), 924–934. https://doi.org/10.1182/blood.2019001212
Drnovšek, R., Milavec Kapun, M., & Rajkovič, U. (2021). Multi-criteria risk evaluation model for developing ventilator-associated pneumonia. Central European Journal of Operations Research, 29(3), 1021–1036. https://doi.org/10.1007/s10100-020-00720-7
Garcia, K. K. S., & Abrahão, A. A. (2021). Research development using redcap software. Healthcare Informatics Research, 27(4), 341–349. https://doi.org/10.4258/HIR.2021.27.4.341
Júnior, J. A. S., Martinho, G. H., Macedo, A. V. de, Verçosa, M. R., Nobre, V., & Teixeira, G. M. (2019). Assessing the impact of ABO incompatibility on major allogeneic hematopoietic stem cell transplant outcomes: a prospective, single-center, cohort study. Hematology, Transfusion and Cell Therapy, 41(1), 1–6. https://doi.org/10.1016/j.htct.2018.05.007
Kimura, F., Kanda, J., Ishiyama, K., Yabe, T., Yoshifuji, K., Fukuda, T., Ozawa, Y., Iwato, K., Eto, T., Mori, T., Uchida, N., Ota, S., Sakura, T., Ichinohe, T., Atsuta, Y., & Kanda, Y. (2019). ABO blood type incompatibility lost the unfavorable impact on outcome in unrelated bone marrow transplantation. Bone Marrow Transplantation, 54(10), 1676–1685. https://doi.org/10.1038/s41409-019-0496-2
Kollman, C., Howe, C. W. S., Anasetti, C., Antin, J. H., Davies, S. M., Filipovich, A. H., Hegland, J., Kamani, N., Keman, N. A., King, R., Ratanatharathorn, V., Weisdorf, D., & Confer, D. L. (2001). Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: The effect of donor age. Blood, 98(7), 2043–2051. https://doi.org/10.1182/blood.V98.7.2043
Kollman, C., Spellman, S. R., Zhang, M. J., Hassebroek, A., Anasetti, C., Antin, J. H., Champlin, R. E., Confer, D. L., DiPersio, J. F., Fernandez-Viña, M., Hartzman, R. J., Horowitz, M. M., Hurley, C. K., Karanes, C., Maiers, M., Mueller, C. R., Perales, M. A., Setterholm, M., Woolfrey, A. E., & Eapen, M. (2016). The effect of donor characteristics on survival after unrelated donor transplantation for hematologic malignancy. Blood, 127(2), 260–267. https://doi.org/10.1182/blood-2015-08-663823
Li, Y., Masiliune, A., Winstone, D., Gasieniec, L., Wong, P., Lin, H., Pawson, R., Parkes, G., & Hadley, A. (2020). Predicting the Availability of Hematopoietic Stem Cell Donors Using Machine Learning. Biology of Blood and Marrow Transplantation, 26(8), 1406–1413. https://doi.org/10.1016/j.bbmt.2020.03.026
Logan, B. R., Maiers, M. J., Sparapani, R. A., Laud, P. W., Spellman, S. R., McCulloch, R. E., & Shaw, B. E. (2021). Optimal Donor Selection for Hematopoietic Cell Transplantation Using Bayesian Machine Learning. JCO Clinical Cancer Informatics, 5, 494–507. https://doi.org/10.1200/cci.20.00185
Lown, R. N., Marsh, S. G. E., Switzer, G. E., Latham, K. A., Madrigal, J. A., & Shaw, B. E. (2014). Ethnicity, length of time on the register and sex predict donor availability at the confirmatory typing stage. Bone Marrow Transplantation, 49(4), 525–531. https://doi.org/10.1038/bmt.2013.206
Lown, R. N., & Shaw, B. E. (2013). Beating the odds: Factors implicated in the speed and availability of unrelated haematopoietic cell donor provision. Bone Marrow Transplantation, 48(2), 210–219. https://doi.org/10.1038/bmt.2012.54
Mühlbacher, A. C., & Kaczynski, A. (2016). Making Good Decisions in Healthcare with Multi-Criteria Decision Analysis: The Use, Current Research and Future Development of MCDA. Applied Health Economics and Health Policy, 14(1), 29–40. https://doi.org/10.1007/s40258-015-0203-4
Muhsen, I. N., Elhassan, T., & Hashmi, S. K. (2018). Artificial intelligence approaches in hematopoietic cell transplantation: A review of the current status and future directions. Turkish Journal of Hematology, 35(3), 152–157. https://doi.org/10.4274/tjh.2018.0123
Patridge, E. F., & Bardyn, T. P. (2018). Research electronic Patridge, E. F., & Bardyn, T. P. (2018). Research electronic data capture (REDCap). Journal of the Medical Library Association, 106(1), 142–144. https://doi.org/10.5195/jmla.2018.319data capture (REDCap). Journal of the Medical Library Association, 106(1), 142–144.
Pereira, S. C. M., Souza, A. M., Bouzas, L. F., & Oliveira, D. C. M. de. (2021). Donor selection: general aspects. JBMTCT, 2(1), 14–21. https://doi.org/10.46765/2675-374x.2021v4n1p14-21
Polomeni, A., Moreno, E., & Schulz-Kindermann, F. (2019). The EBMT Handbook. In E. Carreras, C. Dufour, M. Mohty, & N. Kröger (Eds.), The EBMT Handbook. Springer International Publishing. https://doi.org/10.1007/978-3-030-02278-5
Shaw, B. E., Mayor, N. P., Szydlo, R. M., Bultitude, W. P., Anthias, C., Kirkland, K., Perry, J., Clark, A., MacKinnon, S., Marks, D. I., Pagliuca, A., Potter, M. N., Russell, N. H., Thomson, K., Madrigal, J. A., & Marsh, S. G. E. (2017). Recipient/donor HLA and CMV matching in recipients of T-cell-depleted unrelated donor haematopoietic cell transplants. Bone Marrow Transplantation, 52(5), 717–725. https://doi.org/10.1038/bmt.2016.352
Shaw, Bronwen E., Logan, B. R., Spellman, S. R., Marsh, S. G. E., Robinson, J., Pidala, J., Hurley, C., Barker, J., Maiers, M., Dehn, J., Wang, H., Haagenson, M., Porter, D., Petersdorf, E. W., Woolfrey, A., Horowitz, M. M., Verneris, M., Hsu, K. C., Fleischhauer, K., & Lee, S. J. (2018). Development of an Unrelated Donor Selection Score Predictive of Survival after HCT: Donor Age Matters Most. Biology of Blood and Marrow Transplantation, 24(5), 1049–1056.https://doi.org/10.1016/j.bbmt.2018.02.006
Shouval, R., Fein, J. A., Labopin, M., Kröger, N., Duarte, R. F., Bader, P., Chabannon, C., Kuball, J., Basak, G. W., Dufour, C., Galimard, J. E., Polge, E., Lankester, A., Montoto, S., Snowden, J. A., Styczynski, J., Yakoub-Agha, I., Mohty, M., & Nagler, A. (2019). Outcomes of allogeneic haematopoietic stem cell transplantation from HLA-matched and alternative donors: a European Society for Blood and Marrow Transplantation registry retrospective analysis. The Lancet Haematology, 6(11), e573–e584. https://doi.org/10.1016/S2352-3026(19)30158-9
Simione, A. J., Neves, H. R. A. das, Silva, C. C., Sabaini, P. M. S., Geraldo, B. L. S. S., Pasquini, M., Vigorito, A. C., Ammi, M., Colturato, V., Nabhan, S., Seber, A., Silvério, A., Moreira, M. C. R., Barros, G. M. N., Astigarraga, C. C., Daudt, L. E., Macedo, M. C. M. de A., Chiattone, R., Novis, Y. A. S., … Barroso Duarte, F. (2022). Current use and outcomes of hematopoietic stem cell transplantation: Brazilian summary slides. Journal of Bone Marrow Transplantation and Cellular Therapy, 3(2), 171. https://doi.org/10.46765/2675-374x.2022v3n2p171
Trdin, N., & Bohanec, M. (2018). Extending the multi-criteria decision making method DEX with numeric attributes, value distributions and relational models. Central European Journal of Operations Research, 26(1), 1–41. https://doi.org/10.1007/s10100-017-0468-9
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Thais Benevides; Edmar Gurjão; Larissa Brito
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.