Control ultrasónico de macrófitas acuáticas en embalses: Una revisión integrada
DOI:
https://doi.org/10.33448/rsd-v13i6.45914Palabras clave:
Ondas ultrasónicas; Cavidad acústica; Macrófitas flotantes; Cianobacterias; Sostenibilidad.Resumen
La proliferación excesiva de cianobacterias y macrófitas acuáticas en los embalses de agua ha sido motivo de preocupación para los gobiernos, empresas de energía gestoras de centrales hidroeléctricas y termoeléctricas, y la población circundante. Estos organismos acuáticos, cuando están en exceso, impactan negativamente en la gestión del agua para abastecimiento público y generación de energía, obstruyendo los sistemas de captación y dañando las estaciones de tratamiento de agua. El ultrasonido surge como una técnica potencial para el control de estos organismos. El objetivo de este estudio fue realizar una revisión integrativa mediante la selección de artículos publicados entre 2020 y 2024, centrándose en la eficacia y las implicaciones ecológicas del uso del control ultrasónico sobre estas poblaciones acuáticas. La metodología involucró la búsqueda en bases de datos científicas, seleccionando 14 artículos de un total de 42, basándose en su relevancia para el tema del control ultrasónico y su aplicabilidad práctica. Los resultados indican que las frecuencias ultrasónicas de 20 kHz colapsaron los vacuolos de gas presentes en estos organismos acuáticos en 40 segundos de exposición a la radiación, mostrando un potencial de aplicación de esta técnica en el control de estos organismos, aunque es necesario ajustar la intensidad según las condiciones ambientales específicas del embalse y la biología de los organismos objetivo. Sin embargo, la exposición al ultrasonido puede liberar toxinas, afectar a organismos no objetivo y alterar la estructura comunitaria acuática, resultando en impactos negativos como hipoxia y muerte de peces. Se destaca la necesidad de adoptar un modelo adaptativo para ajustar los parámetros de ultrasonido e integrarlos con otras prácticas de gestión. El estudio enfatiza la importancia de realizar pruebas a escala de laboratorio y monitoreo continuo para optimizar la eficacia y minimizar los riesgos ambientales. También se recomienda el desarrollo futuro de transductores ultrasónicos más eficientes y menos invasivos, y la colaboración interdisciplinaria para promover una gestión más sostenible de los embalses.
Citas
Akinnawo, S. O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 12, 100733. https://doi.org/10.1016/J.ENVC.2023.100733
Akowanou, A. V. O., Deguenon, H. E. J., Balogoun, K. C., Daouda, M. M. A., & Aina, M. P. (2023). The combined effect of three floating macrophytes in domestic wastewater treatment. Scientific African, 20, e01630. https://doi.org/10.1016/J.SCIAF.2023.E01630
Alahuhta, J., Kosten, S., Akasaka, M., Auderset, D., Azzella, M. M., Bolpagni, R., Bove, C. P., Chambers, P. A., Chappuis, E., Clayton, J., de Winton, M., Ecke, F., Gacia, E., Gecheva, G., Grillas, P., Hauxwell, J., Hellsten, S., Hjort, J., Hoyer, M. V., … Heino, J. (2017). Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography, 44(8), 1758–1769. https://doi.org/10.1111/JBI.12978
Alahuhta, J., Di Febbraro, M., Lind, L., Ochs Konstantin, K., Ochs, K., Rivaes, R. P., Ferreira, T., & Egger, G. (2018). Flow Management to Control Excessive Growth of Macrophytes – An Assessment Based on Habitat Suitability Modeling. https://doi.org/10.3389/fpls.2018.00356
Ali, N. F., Kamel, Z. M., & Wahba, S. Z. (2020). Ultrasonic as Green Chemistry for Bacterial and Algal Control in Drinking Water Treatment Source. Egyptian Journal of Chemistry, 63(10), 4055–4062. https://doi.org/10.21608/EJCHEM.2020.42173.2852
Anabtawi, H. M., Lee, W. H., Al-Anazi, A., Mohamed, M. M., & Aly Hassan, A. (2024). Advancements in Biological Strategies for Controlling Harmful Algal Blooms (HABs). Water, 16(2), 224. https://doi.org/10.3390/W16020224
Assunção, J., Amaro, H. M., Malcata, F. X., & Guedes, A. C. (2022). Factorial Optimization of Ultrasound-Assisted Extraction of Phycocyanin from Synechocystis salina: Towards a Biorefinery Approach. Life, 12(9). https://doi.org/10.3390/life12091389
Bai, G., Zhang, Y., Yan, P., Yan, W., Kong, L., Wang, L., Wang, C., Liu, Z., Liu, B., Ma, J., Zuo, J., Li, J., Bao, J., Xia, S., Zhou, Q., Xu, D., He, F., & Wu, Z. (2020). Spatial and seasonal variation of water parameters, sediment properties, and submerged macrophytes after ecological restoration in a long-term (6 year) study in Hangzhou west lake in China: Submerged macrophyte distribution influenced by environmental variables. Water Research, 186. https://doi.org/10.1016/j.watres.2020.116379
Baydum, V. P. A., Oliveira, F. H. P. C. de, & Ramalho, W. P. (2018). Presença de macrófitas em reservatórios de abastecimento e implicações no tratamento de água. Revista DAE, 66(210), 17–23. https://doi.org/10.4322/dae.2018.003
Bermarija, T., Hiscock, A., Johnston, L., Huang, Y., Comeau, A., & Jamieson, R. (2022). Performance and ecological impacts of benthic barriers for the control of an invasive plant in a small urban lake. Ecological Engineering, 184, 106784. https://doi.org/10.1016/J.ECOLENG.2022.106784
Björn, L. O., Middleton, B. A., Germ, M., & Gaberščik, A. (2022). Ventilation Systems in Wetland Plant Species. Diversity, 14(7). https://doi.org/10.3390/d14070517
Botelho, L. L. R., de Almeida Cunha, C. C., & Macedo, M. (2011). O método da revisão integrativa nos estudos organizacionais. Gestão e Sociedade, 5(11), 121–136.
Brasil. National Institute of Metrology, Standardization and Industrial Quality (INMETRO) (2020). Ultrassom. https://www.gov.br/inmetro/pt-br/assuntos/metrologia-cientifica/laboratorios-de-metrologia-do-inmetro/acustica-ultrassom-e-vibracao/ultrassom
Brasil. Minas Gerais Energy Company (CEMIG) (2021). Aquatic Macrophytes - Characterization and Importance in Hydroeletric Reservoirs (CEMIG - Minas Gerais Energy Company, Ed.; 1st ed., Vol. 1).
Burch, M., Brookes, J., & Chorus, I. (2021). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management.
Cai, X., Gao, G., Yang, J., Tang, X., Dai, J., Chen, D., & Song, Y. (2014). An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes. Journal of Basic Microbiology, 54(7), 758–761. https://doi.org/10.1002/jobm.201300041
Calvo, C., Mormul, R. P., Figueiredo, B. R. S., Cunha, E. R., Thomaz, S. M., & Meerhoff, M. (2019). Herbivory can mitigate, but not counteract, the positive effects of warming on the establishment of the invasive macrophyte Hydrilla verticillata. Biological Invasions, 21(1), 59–66. https://doi.org/10.1007/S10530-018-1803-3/FIGURES/1
Camargo Júnior, R. N. C., Silva, W. C. da, Silva, É. B. R. da, Sá, P. R. de, Friaes, E. P. P., Costa, B. O. da, Rocha, C. B. R., Silva, L. C. M. S. da, Borges, D. C., Cruz, S. L. F. da, Nina, L. M. B., & Oliveira Júnior, J. A. de. (2023). Revisão integrativa, sistemática e narrativa - aspectos importantes na elaboração de uma revisão de literatura. Revista ACB: Biblioteconomia Em Santa Catarina, 28(1). https://dialnet.unirioja.es/servlet/articulo?codigo=8970882&info=resumen&idioma=POR
Cerveira Junior, W. R., Brunetti, I. A., Pereira, P. C., Alcántara-de la Cruz, R., Cruz, C. da, & Carvalho, L. B. de. (2023). Chemical management of aquatic macrophytes under simulated floodplain condition in mesocosms. Journal of Environmental Science and Health, Part B, 58(3), 255–261. https://doi.org/10.1080/03601234.2023.2178790
Córdova, M. O., Keffer, J. F., Giacoppini, D. R., & Munhoz, C. B. R. (2024). Environmental and temporal variability of the aquatic macrophyte community in riverine environments in the southern Amazonia. Hydrobiologia, 851(6), 1415–1433. https://doi.org/10.1007/S10750-023-05385-2/FIGURES/5
Couto, E., Assemany, P. P., Assis Carneiro, G. C., & Ferreira Soares, D. C. (2022). The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review. In Chemosphere, 302. Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2022.134808
de Paula, R. S., Cunha, A. F. e., de Paula Reis, M., Souza, C. C. e., de Oliveira Júnior, R. B., Barbosa, N. P. U., Cardoso, A. V., Jorge, E. C., & Miranda, L. S. (2024). Evidence of cryptic speciation in the invasive hydroid Cordylophora caspia (Pallas, 1771) (Cnidaria, Hydrozoa) supported by new records. Organisms Diversity and Evolution, 24(1), 35–50. https://doi.org/10.1007/S13127-023-00632-9/FIGURES/4
Dehghani, M. H., Karri, R. R., Koduru, J. R., Manickam, S., Tyagi, I., Mubarak, N. M., & Suhas. (2023). Recent trends in the applications of sonochemical reactors as an advanced oxidation process for the remediation of microbial hazards associated with water and wastewater: A critical review. Ultrasonics Sonochemistry, 94. https://doi.org/10.1016/j.ultsonch.2023.106302
Diniz, C. R., Ceballos, B. S. O. de, Barbosa, J. E. de L., & Konig, A. (2005). Uso de macrófitas aquáticas como solução ecológica para melhoria da qualidade de água. Revista Brasileira de Engenharia Agrícola e Ambiental, 9(suppl 1), 226–230. https://doi.org/10.1590/1807-1929/AGRIAMBI.V9NSUPP226-230
Dolas, R., Saravanan, C., & Kaur, B. P. (2019). Emergence and era of ultrasonic’s in fruit juice preservation: A review. In Ultrasonics Sonochemistry, 58. Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2019.05.026
dos Santos, N. G., Stephan, L. R., Otero, A., Iglesias, C., & Castilho-Noll, M. S. M. (2020). How free-floating macrophytes influence interactions between planktivorous fish and zooplankton in tropical environments? An in-lake mesocosm approach. Hydrobiologia, 847(5), 1357–1370. https://doi.org/10.1007/S10750-020-04194-1/FIGURES/3
Esiukova, E. E., Lobchuk, O. I., Volodina, A. A., & Chubarenko, I. P. (2021). Marine macrophytes retain microplastics. Marine Pollution Bulletin, 171. https://doi.org/10.1016/j.marpolbul.2021.112738
Fetyan, N. A. H., & Salem Attia, T. M. (2020). Water purification using ultrasound waves: application and challenges. Arab Journal of Basic and Applied Sciences, 27(1), 194–207. https://doi.org/10.1080/25765299.2020.1762294
Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. In Foods, 7(10). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods7100164
Gentilin-Avanci, C., Pinha, G. D., Petsch, D. K., Mormul, R. P., & Thomaz, S. M. (2021). The invasive macrophyte Hydrilla verticillata causes taxonomic and functional homogenization of associated Chironomidae community. Limnology, 22(1), 129–138. https://doi.org/10.1007/S10201-020-00641-Z/FIGURES/3
Getchell, R. G., George, E., Rice, A. N., Malatos, J. M., Chambers, B. M., Griefen, A., Nieder, C., & Rudstam, L. G. (2022). Effects of ultrasonic algal control devices on fish. Lake and Reservoir Management, 38(3), 240–255. https://doi.org/10.1080/10402381.2022.2077865
Ghernaout, D., & Elboughdiri, N. (2020). Dealing with Cyanobacteria and Cyanotoxins: Engineering Viewpoints. OALib, 07(05), 1–20. https://doi.org/10.4236/oalib.1106363
Grigoryeva, N. Y., Chistyakova, L. V., & Liss, A. A. (2018). Spectroscopic Techniques for Estimation of Physiological State of Blue-Green Algae after Weak External Action. Oceanology, 58(6), 923–931. https://doi.org/10.1134/S0001437018060061/METRICS
Haroon, A. M. (2022). Review on aquatic macrophytes in Lake Manzala, Egypt. In Egyptian Journal of Aquatic Research, 48(1), 1–12. National Institute of Oceanography and Fisheries. https://doi.org/10.1016/j.ejar.2022.02.002
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. In Nature Reviews Microbiology, 16(8), 471–483. Nature Publishing Group. https://doi.org/10.1038/s41579-018-0040-1
Humbert, J.-F., & Quiblier, C. (2019). The Suitability of Chemical Products and Other Short-Term Remedial Methods for the Control of Cyanobacterial Blooms in Freshwater Ecosystems. Frontiers in Environmental Science, 176. https://doi.org/10.3389/fenvs.2019.00176
Hussner, A., Stiers, I., Verhofstad, M. J. J. M., Bakker, E. S., Grutters, B. M. C., Haury, J., Van Valkenburg, J. L. C. H., Brundu, G., Newman, J., Clayton, J. S., Anderson, L. W. J., & Hofstra, D. (2017). Management and control methods of invasive alien freshwater aquatic plants: A review. Aquatic Botany, 136, 112–137. https://doi.org/10.1016/j.aquabot.2016.08.002
Jančula, D., Mikula, P., Maršálek, B., Rudolf, P., & Pochylý, F. (2014). Selective method for cyanobacterial bloom removal: Hydraulic jet cavitation experience. Aquaculture International, 22(2), 509–521. https://doi.org/10.1007/S10499-013-9660-7/FIGURES/8
Joyce, E. M., Wu, X., & Mason, T. J. (2010). Effect of ultrasonic frequency and power on algae suspensions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 45(7), 863–866. https://doi.org/10.1080/10934521003709065
Karouach, F., Ben Bakrim, W., Ezzariai, A., Sobeh, M., Kibret, M., Yasri, A., Hafidi, M., & Kouisni, L. (2022). A Comprehensive Evaluation of the Existing Approaches for Controlling and Managing the Proliferation of Water Hyacinth (Eichhornia crassipes): Review. Frontiers in Environmental Science, 9, 767871. https://doi.org/10.3389/FENVS.2021.767871/BIBTEX
Kist, D. L., Cano, R., Sapkaite, I., Pérez-Elvira, S. I., & Monteggia, L. O. (2020). Macrophytes as a Digestion Substrate. Assessment of a Sonication Pretreatment. Waste and Biomass Valorization, 11(5), 1765–1775. https://doi.org/10.1007/S12649-018-0502-8/TABLES/5
Kitamura, R. S. A., da Silva, A. R. S., Pagioro, T. A., & Martins, L. R. R. (2023). Enhancing Biocontrol of Harmful Algae Blooms: Seasonal Variation in Allelopathic Capacity of Myriophyllum aquaticum. Water (Switzerland), 15(13). https://doi.org/10.3390/w15132344
Klemenčič, P., & Klemenčič, A. K. (2021). The effect of ultrasound for algae growth control on zooplankton. Acta Hydrotechnica, 34(60), 1–9. https://doi.org/10.15292/ACTA.HYDRO.2021.01
Knobloch, S., Philip, J., Ferrari, S., Benhaïm, D., Bertrand, M., & Poirier, I. (2021). The effect of ultrasonic antifouling control on the growth and microbiota of farmed European sea bass (Dicentrarchus labrax). https://doi.org/10.1016/j.marpolbul.2021.112072
Kumar, R., Parvaze, S., Huda, M. B., & Allaie, S. P. (2022). The changing water quality of lakes—a case study of Dal Lake, Kashmir Valley. In Environmental Monitoring and Assessment, 194(3). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10661-022-09869-x
Kurokawa, M., King, P. M., Wu, X., Joyce, E. M., Mason, T. J., & Yamamoto, K. (2016). Effect of sonication frequency on the disruption of algae. Ultrasonics Sonochemistry, 31, 157–162. https://doi.org/10.1016/j.ultsonch.2015.12.011
Lampis, A., Pavanelli, J. M. M., Guerrero, A. L. D. V., & Bermann, C. (2021). Possibilidades e limites da transicao energetica: uma analise a luz da ciencia pos-normal. Estudos Avancados, 35(103), 183–200. https://doi.org/10.1590/S0103-4014.2021.35103.010
Lesiv, M. S., Polishchuk, A. I., & Antonyak, H. L. (2020). Aquatic macrophytes: ecological features and functions. Biologicni Studii, 14(2), 79–94. https://doi.org/10.30970/sbi.1402.619
Li, J., Long, H., Song, C., Wu, W., Yeabah, T. O., & Qiu, Y. (2014). Study on the removal of algae from lake water and its attendant water quality changes using ultrasound. Desalination and Water Treatment, 52(25–27), 4762–4771. https://doi.org/10.1080/19443994.2013.814384
Li, J., Zou, C., Liao, R., Peng, L., Wang, H., Guo, Z., & Ma, H. (2021). Characterization of Intracellular Structure Changes of Microcystis under Sonication Treatment by Polarized Light Scattering. Biosensors 2021, 11(8), 279. https://doi.org/10.3390/BIOS11080279
Li, L., Balto, G., Xu, X., Shen, Y., & Li, J. (2023). The feeding ecology of grass carp: A review. In Reviews in Aquaculture, 15(4), 1335–1354. John Wiley and Sons Inc. https://doi.org/10.1111/raq.12777
Li, X., Zhao, W., Chen, J., & Wang, F. (2023). Dosage impact of submerged plants extracts on Microcystis aeruginosa growth: From hormesis to inhibition. Ecotoxicology and Environmental Safety, 268, 115703. https://doi.org/10.1016/J.ECOENV.2023.115703
Lira, V. S., Moreira, I. C., Tonello, P. S., Henriques Vieira, A. A., & Fracácio, R. (2017). Evaluation of the Ecotoxicological Effects of Microcystis aeruginosa and Cylindrospermopsis raciborskii on Ceriodaphnia dubia Before and After Treatment with Ultrasound. Water, Air, and Soil Pollution, 228(1), 1–8. https://doi.org/10.1007/S11270-016-3209-0/FIGURES/5
Long, H., Qin, X., Xu, R., Mei, C., Xiong, Z., Deng, X., Huang, K., & Liang, H. (2021). Non-Modified Ultrasound-Responsive Gas Vesicles from Microcystis with Targeted Tumor Accumulation. International Journal of Nanomedicine, 16, 8405–8416. https://doi.org/10.2147/IJN.S342614
Lu, J., Bunn, S. E., & Burford, M. A. (2018). Nutrient release and uptake by littoral macrophytes during water level fluctuations. Science of The Total Environment, 622–623, 29–40. https://doi.org/10.1016/J.SCITOTENV.2017.11.199
Lürling, M., & Tolman, Y. (2014). Effects of commercially available ultrasound on the zooplankton grazer Daphnia and consequent water greening in laboratory experiments. Water (Switzerland), 6(11), 3247–3263. https://doi.org/10.3390/w6113247
Ma, B., Chen, Y., Hao, H., Wu, M., Wang, B., Lv, H., & Zhang, G. (2005). Influence of ultrasonic field on microcystins produced by bloom-forming algae. Colloids and Surfaces B: Biointerfaces, 41(2–3), 197–201. https://doi.org/10.1016/j.colsurfb.2004.12.010
Ma, F., Yang, L., Lv, T., Zuo, Z., Zhao, H., Fan, S., Liu, C., & Yu, D. (2021). The Biodiversity–Biomass Relationship of Aquatic Macrophytes Is Regulated by Water Depth: A Case Study of a Shallow Mesotrophic Lake in China. Frontiers in Ecology and Evolution, 9, 650001. https://doi.org/10.3389/FEVO.2021.650001/BIBTEX
Manolaki, P., Mouridsen, M. B., Nielsen, E., Olesen, A., Jensen, S. M., Lauridsen, T. L., Baattrup-Pedersen, A., Sorrell, B. K., & Riis, T. (2020). A comparison of nutrient uptake efficiency and growth rate between different macrophyte growth forms. Journal of Environmental Management, 274, 111181. https://doi.org/10.1016/J.JENVMAN.2020.111181
Misteli, B., Pannard, A., Aasland, E., Harpenslager, S. F., Motitsoe, S., Thiemer, K., Llopis, S., Coetzee, J., Hilt, S., Köhler, J., Schneider, S. C., Piscart, C., & Thiébaut, G. (2023). Short-term effects of macrophyte removal on aquatic biodiversity in rivers and lakes. Journal of Environmental Management, 325, 116442. https://doi.org/10.1016/J.JENVMAN.2022.116442
Moftakhari, S., Movahed, A., Calgaro, L., & Marcomini, A. (2022). Trends and characteristics of employing cavitation technology for water and wastewater treatment with a focus on hydrodynamic and ultrasonic cavitation over the past two decades: A Scientometric analysis. Science of the Total Environment, 858, 159802. https://doi.org/10.1016/j.scitotenv.2022.159802
Moura Júnior, E. G., Pott, A., Severi, W., & Zickel, C. S. (2018). Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs. Brazilian Journal of Biology, 79(1), 120–126. https://doi.org/10.1590/1519-6984.179656
Mullick, A., & Neogi, S. (2017). A review on acoustic methods of algal growth control by ultrasonication through existing and novel emerging technologies. In Reviews in Chemical Engineering, 33(5), 469–490. Walter de Gruyter GmbH. https://doi.org/10.1515/revce-2016-0010
Pacheco-Álvarez, M., Picos Benítez, R., Rodríguez-Narváez, O. M., Brillas, E., & Peralta-Hernández, J. M. (2022). A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. Chemosphere, 303, 134883. https://doi.org/10.1016/j.chemosphere.2022.134883
Park, J., Church, J., Son, Y., Kim, K. T., & Lee, W. H. (2017). Recent advances in ultrasonic treatment: Challenges and field applications for controlling harmful algal blooms (HABs). In Ultrasonics Sonochemistry, 38, 326–334. Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2017.03.003
Peng, Y., Yang, X., Huang, H., Su, Q., Ren, B., Zhang, Z., & Shi, X. (2023a). Fluorescence and molecular weight dependence of disinfection by-products formation from extracellular organic matter after ultrasound irradiation. Chemosphere, 323, 138279. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138279
Peng, Y., Yang, X., Ren, B., Zhang, Z., Deng, X., Yin, W., Zhou, S., & Yang, S. (2023b). Algae removal characteristics of the ultrasonic radiation enhanced drinking water treatment process. Journal of Water Process Engineering, 55, 2214–7144. https://doi.org/10.1016/j.jwpe.2023.104154
Poveda, J. (2022). The use of freshwater macrophytes as a resource in sustainable agriculture. Journal of Cleaner Production, 369, 133247. https://doi.org/10.1016/J.JCLEPRO.2022.133247
Purcell, D. (2009). Control of Algal Growth in Reservoirs with Ultrasound [Doctoral dissertation, Cranfield University]. https://core.ac.uk/download/pdf/140019.pdf
Purdi, T. S., Arima, D. S., & Ningrum, A. (2023). Ultrasound-assisted extraction of Spirulina platensis protein: physicochemical characteristic and techno-functional properties. Journal of Food Measurement and Characterization, 17, 5474–5486. https://doi.org/10.1007/s11694-023-02051-y
Rajasekhar, P., Fan, L., Nguyen, T., & Roddick, F. A. (2012). A review of the use of sonication to control cyanobacterial blooms. Water Research, 46(14), 4319–4329. https://doi.org/10.1016/j.watres.2012.05.054
Rellán, S., Osswald, J., Vasconcelos, V., & Gago-Martinez, A. (2007). Analysis of anatoxin-a in biological samples using liquid chromatography with fluorescence detection after solid phase extraction and solid phase microextraction. Journal of Chromatography A, 1156(1–2), 134–140. https://doi.org/10.1016/J.CHROMA.2006.12.059
Revéret, A., Rijal, D. P., Heintzman, P. D., Brown, A. G., Stoof-Leichsenring, K. R., & Alsos, I. G. (2023). Environmental DNA of aquatic macrophytes: The potential for reconstructing past and present vegetation and environments. Freshwater Biology, 68, 1929–1950. https://doi.org/10.1111/fwb.14158
Robles, M., Garbayo, I., Wierzchos, J., Carlos Vílchez, ·, & Cuaresma, M. (2022). Effect of low-frequency ultrasound on disaggregation, growth and viability of an extremotolerant cyanobacterium. Journal of Applied Phycology, 34(6), 2895–2904. https://doi.org/10.1007/s10811-022-02831-x
Rocha, C. M. C., Lima, D., Cunha, M. C. C., & Almeida, J. S. (2018). Aquatic macrophytes and trophic interactions: a scientometric analyses and research perspectives. Brazilian Journal of Biology, 79(4), 617–624. https://doi.org/10.1590/1519-6984.185505
Rumyantsev, V. A., Rybakin, V. N., Rudskii, I. V, & Korovin, A. N. (2021). The Effects of Low-Intensity Ultrasound on Toxigenic Cyanobacteria. Doklady Earth Sciences, 498, 101–104. https://doi.org/10.1134/S1028334X21050147
Rumyantsev, V. A., Rybakin, V. N., Rudsky, I. V., Pavlova, O. A., Kapustina, L. L., Mitrukova, G. G., & Korovin, A. N. (2022). The Problem of Regulation of Toxigenic Blooming in Freshwater Bodies. Water Resources, 49(2), 311–320. https://doi.org/10.1134/S0097807822020129/FIGURES/5
Sayanthan, S., Hasan, H. A., & Abdullah, S. R. S. (2024). Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy. Water (Switzerland), 16(6), 870. https://doi.org/10.3390/w16060870
Shi, C., Fang, W., Ma, M., Xu, W., & Ye, J. (2023). Changes in Extracellular Microcystins (MCs) Accompanying Algae/Cyanobacteria Removal during Three Representative Algae/Cyanobacteria Inactivation Processes and an MC Diffusion Model in Still Water. Water (Switzerland), 15(20), 3591. https://doi.org/10.3390/w15203591
Sobral, D. M., & Santos, V. A. Dos. (2023). Uso do ultrassom para controle de organismos aquáticos em reservatórios - Uma revisão de patentes. In Anais do III WENDEQ. https://www.even3.com.br/anais/wendeq2023/640457-uso-do-ultrassom-para-controle-de-organismos-aquaticos-em-reservatorios--uma-revisao-de-patentes
Sompura, Y., Bhardwaj, S., Selwal, G., Soni, V., & Ashokkumar, K. (2024). Unrevealing the potential of aquatic macrophytes for phytoremediation in heavy metal-polluted wastewater. Journal of Current Opinion in Crop Science, 5(1), 48–61. https://doi.org/10.62773/jcocs.v5i1.233
Song, L., Hou, X., Wong, K. F., Yang, Y., Qiu, Z., Wu, Y., Hou, S., Fei, C., Guo, J., & Sun, L. (2021). Gas-filled protein nanostructures as cavitation nuclei for molecule-specific sonodynamic therapy. Acta Biomaterialia, 136, 533–545. https://doi.org/10.1016/j.actbio.2021.09.010
Souza, E. L. C., Filho, J. T., Velini, E. D., Silva, J. R. M., Tonello, K. C., Foloni, L. L., Barbosa, A. C., & Freato, T. A. (2020). Water Hyacinth Control by Glyphosate Herbicide and Its Impact on Water Quality. Journal of Water Resource and Protection, 12(01), 60–73. https://doi.org/10.4236/jwarp.2020.121004
Sutherland, W. J., Broad, S., Caine, J., Clout, M., Dicks, L. V, Doran, H., Entwistle, A. C., Fleishman, E., Gibbons, D. W., Keim, B., Leanstey, B., Lickorish, F. A., Markillie, P., Monk, K. A., Mortimer, D., Ockendon, N., Pearce-Higgins, J. W., Peck, L. S., Pretty, J., & Wright, K. E. (2015). A Horizon Scan of Global Conservation Issues for 2016. https://doi.org/10.1016/j.tree.2015.11.007
Svendsen, E., Dahle, S. W., Hagemann, A., Birkevold, J., Delacroix, S., & Andersen, A. B. (2018). Effect of ultrasonic cavitation on small and large organisms for water disinfection during fish transport. Aquaculture Research, 49(3), 1166–1175. https://doi.org/10.1111/ARE.13567
Tan, W. K., Cheah, S. C., Parthasarathy, S., Rajesh, R. P., Pang, C. H., & Manickam, S. (2021). Fish pond water treatment using ultrasonic cavitation and advanced oxidation processes. Chemosphere, 274, 129702. https://doi.org/10.1016/J.CHEMOSPHERE.2021.129702
Tao, B., Sun, Q., Wang, J., Zhang, J., & Xing, Z. (2024). Optimizing Multi-Scenario Water Resource Allocation in Reservoirs Considering Trade-Offs between Water Demand and Ecosystem Services. Water, 16(4), 563. https://doi.org/10.3390/W16040563
Tasker, S. J. L., Foggo, A., & Bilton, D. T. (2022). Quantifying the ecological impacts of alien aquatic macrophytes: A global meta-analysis of effects on fish, macroinvertebrate and macrophyte assemblages. Freshwater Biology, 67(11), 1847–1860. https://doi.org/10.1111/fwb.13985
Thiemer, K., Immerzeel, B., Schneider, S., Sebola, K., Coetzee, J., Baldo, M., Thiebaut, G., Hilt, S., Köhler, J., Harpenslager, S. F., & Vermaat, J. E. (2023). Drivers of Perceived Nuisance Growth by Aquatic Plants. Environmental Management, 71(5), 1024–1036. https://doi.org/10.1007/S00267-022-01781-X/FIGURES/6
Thiemer, K., Schneider, S. C., & Demars, B. O. L. (2021). Mechanical removal of macrophytes in freshwater ecosystems: Implications for ecosystem structure and function. Science of The Total Environment, 782, 146671. https://doi.org/10.1016/J.SCITOTENV.2021.146671
Thodhal Yoganandham, S., & Pei, D.-S. (2023). Harmful Algal Bloom in the Reservoir. In Reservoir Ecotoxicology (pp. 51–61). Springer International Publishing. https://doi.org/10.1007/978-3-031-26344-6_5
Tzanakis, I., Lebon, G. S. B., Eskin, D. G., & Pericleous, K. A. (2017). Characterizing the cavitation development and acoustic spectrum in various liquids. Ultrasonics Sonochemistry, 34, 651–662. https://doi.org/10.1016/j.ultsonch.2016.06.034
USA. U. S. Environmental Protection Agency (EPA) (2021). Indicators: Macrophytes. What are macrophytes? https://www.epa.gov/national-aquatic-resource-surveys/indicators-macrophytes
Wang, J. J., Li, W., & Wu, X. (2021). Microcystis aeruginosa removal by the combination of ultrasound and TiO2/biochar. RSC Advances, 11(40), 24985–24990. https://doi.org/10.1039/D1RA03308E
Wang, J. J., Wang, Y., Li, W., & Wu, X. (2023). Enhancement of KMnO4 treatment on cyanobacteria laden-water via 1000 kHz ultrasound at a moderate intensity. Ultrasonics Sonochemistry, 98, 106502. https://doi.org/10.1016/J.ULTSONCH.2023.106502
Wang, Y., Mukherjee, A., & Castel, A. (2022). Non-destructive monitoring of incipient corrosion in reinforced concrete with top-bar defect using a combination of electrochemical and ultrasonic techniques. Construction and Building Materials, 360, 129346. https://doi.org/10.1016/j.conbuildmat.2022.129346
WU, M.-Y., & WU, J. (2007). In-vitro Investigations on Ultrasonic Control of Water Chestnut. Analytical Biochemistry, 169, 227–233.
Wu, X., Joyce, E. M., & Mason, T. J. (2011). The effects of ultrasound on cyanobacteria. Harmful Algae. https://doi.org/10.1016/j.hal.2011.06.005
Wu, X., Joyce, E. M., & Mason, T. J. (2012). Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. Water Research, 46(9), 2851–2858. https://doi.org/10.1016/J.WATRES.2012.02.019
Wu, X., & Mason, T. J. (2017). Evaluation of Power Ultrasonic Effects on Algae Cells at a Small Pilot Scale. Water, 9(7), 470. https://doi.org/10.3390/W9070470
Wu, X., Pan, J., Ren, W., Yang, J., & Luo, L. (2021). The effects of water depth on the growth of two submerged macrophytes in an in situ experiment. Journal of Freshwater Ecology, 36(1), 271–284. https://doi.org/10.1080/02705060.2021.1969294
Xu, H., Tang, Z., Liang, Z., Chen, H., & Dai, X. (2023). Neglected methane production and toxicity risk in low-frequency ultrasound for controlling harmful algal blooms. Environmental Research, 232, 116422. https://doi.org/10.1016/J.ENVRES.2023.116422
Xu, J., Xia, M., Ferreira, V. G., Wang, D., & Liu, C. (2024). Estimating and Assessing Monthly Water Level Changes of Reservoirs and Lakes in Jiangsu Province Using Sentinel-3 Radar Altimetry Data. Remote Sensing, 16(5). https://doi.org/10.3390/rs16050808
Yang, C., Shen, X., Wu, J., Shi, X., Cui, Z., Tao, Y., Lu, H., Li, J., & Huang, Q. (2023). Driving forces and recovery potential of the macrophyte decline in East Taihu Lake. Journal of Environmental Management, 342, 118154. https://doi.org/10.1016/J.JENVMAN.2023.118154
Yang, Y., & Liu, B. (2023). Reservoir ecological operation on sediment-laden river considering wetland protection. Frontiers in Environmental Science, 11, 1207032. https://doi.org/10.3389/FENVS.2023.1207032/BIBTEX
Ye, Z., Liu, H., Chen, Y., Shu, S., Wu, Q., & Wang, S. (2017). Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009). PLoS ONE, 12(9). https://doi.org/10.1371/journal.pone.0183800
Yücetepe, A., Saroğlu, Ö., & Özçelik, B. (2019). Response surface optimization of ultrasound-assisted protein extraction from Spirulina platensis: investigation of the effect of extraction conditions on techno-functional properties of protein concentrates. Journal of Food Science and Technology, 56(7), 3282–3292. https://doi.org/10.1007/s13197-019-03796-5
Zanchett, G., & Oliveira-Filho, E. C. (2013). Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects. Toxins, 5(10), 1896–1917. https://doi.org/10.3390/TOXINS5101896
Zhan, M. ming, Liu, P. rui, Liu, X. ya, Hong, Y., & Xie, X. (2021). Inactivation and Removal Technologies for Algal-Bloom Control: Advances and Challenges. Current Pollution Reports, 7(3), 392–406. https://doi.org/10.1007/S40726-021-00190-8
Zhang, C., & Xie, J. (2022). Ultrasound-Assisted Slightly Acidic Electrolyzed Water in Aquatic Product Sterilization: A Review. Foods, 11(23). https://doi.org/10.3390/FOODS11233863
Zhang, L., Yang, J., Liu, L., Wang, N., Sun, Y., Huang, Y., & Yang, Z. (2021). Simultaneous removal of colonial Microcystis and microcystins by protozoa grazing coupled with ultrasound treatment. Journal of Hazardous Materials, 420, 126616. https://doi.org/10.1016/J.JHAZMAT.2021.126616
Zhang, M., Yu, X., Jiang, S., Zhou, X., & Huang, X. (2024). Fluctuations of aquatic macrophytes in a shallow lake in eastern China over the last 1800 years: Evidence from n-alkanes. Palaeogeography, Palaeoclimatology, Palaeoecology, 634, 111931. https://doi.org/10.1016/J.PALAEO.2023.111931
Zhao, D., Jiang, H., Cai, Y., & An, S. (2012). Artificial Regulation of Water Level and Its Effect on Aquatic Macrophyte Distribution in Taihu Lake. PLoS ONE, 7(9), e44836. https://doi.org/10.1371/JOURNAL.PONE.0044836
Zhu, S., Xu, J., Adhikari, B., Lv, W., & Chen, H. (2023). Nostoc sphaeroides Cyanobacteria: a review of its nutritional characteristics and processing technologies. Critical Reviews in Food Science and Nutrition, 63(27), 8975–8991. https://doi.org/10.1080/10408398.2022.2063251
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Daniel de Morais Sobral; Christian Matheus Barbosa de Menezes; Gleice Paula de Araújo; Leonildo Pereira Pedrosa Junior; Bruno Augusto Cabral Roque; Leonardo Bandeira dos Santos; Mohand Benachour; Valdemir Alexandre dos Santos
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.